

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

GEOMETRY-OF-FIRE TRACKING ALGORITHM FOR
DIRECT-FIRE WEAPON SYSTEMS

by

Caleb K. Khan

September 2015

Thesis Advisor: Zachary Staples
Co-Advisor: Xiaoping Yun
Second Reader: James Calusdian

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2015

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
GEOMETRY-OF-FIRE TRACKING ALGORITHM FOR DIRECT-FIRE
WEAPON SYSTEMS

5. FUNDING NUMBERS

6. AUTHOR(S) Khan, Caleb K.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The continuous cycle for validating geometry of fires on a battlefield impedes momentum. A force that can decide and act quicker
than the enemy has an advantage. The goal of this thesis is to provide dismounted infantry units with this advantage by developing
a sensor network that streamlines the geometry-of-fire validation cycle for direct-fire weapon systems. This is the first attempt to
develop technology for this specific application. Prototyping the system’s overall design became this thesis’ main objective. A
kinematic model of a rifleman was created to describe the motion of a manipulated weapon system, and a geometry-of-fire tracking
algorithm was created to compute the offsets between friendly nodes in a network. The kinematic model and tracking algorithm
were both verified using YEI 3-Space Data-Logging sensors and the VICON motion system. The sensor, model, and algorithm
were integrated into a tactical network that was designed by concurrent research at the Naval Postgraduate School. Assuming an
inertial personal navigation system can be created, we found that this basic prototype provided a viable foundation for further
development. The results of this thesis demonstrate the potential for this technology to be fully developed and implemented to
enhance dismounted infantry units.

14. SUBJECT TERMS
Geometry of fire, situational awareness, close quarters combat, direct-fire weapon system, tactical
network, personal navigation system, orientation, kinematics, coordinate system, reference frame,
transformation operator, quaternion, rotation matrix, Euler angles, YEI, VICON.

15. NUMBER OF
PAGES

107
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

GEOMETRY-OF-FIRE TRACKING ALGORITHM FOR DIRECT-FIRE
WEAPON SYSTEMS

Caleb K. Khan
Captain, United States Marine Corps

B.S., United States Naval Academy, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Author: Caleb K. Khan

Approved by: Zachary Staples
Thesis Advisor

Xiaoping Yun
Co-Advisor

James Calusdian
Second Reader

R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The continuous cycle for validating geometry of fires on a battlefield impedes

momentum. A force that can decide and act quicker than the enemy has an advantage.

The goal of this thesis is to provide dismounted infantry units with this advantage by

developing a sensor network that streamlines the geometry-of-fire validation cycle for

direct-fire weapon systems. This is the first attempt to develop technology for this

specific application. Prototyping the system’s overall design became this thesis’ main

objective. A kinematic model of a rifleman was created to describe the motion of a

manipulated weapon system, and a geometry-of-fire tracking algorithm was created to

compute the offsets between friendly nodes in a network. The kinematic model and

tracking algorithm were both verified using YEI 3-Space Data-Logging sensors and the

VICON motion system. The sensor, model, and algorithm were integrated into a tactical

network that was designed by concurrent research at the Naval Postgraduate School.

Assuming an inertial personal navigation system can be created, we found that this basic

prototype provided a viable foundation for further development. The results of this thesis

demonstrate the potential for this technology to be fully developed and implemented to

enhance dismounted infantry units.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. TECHNOLOGICAL SUPERIORITY IN WAR ..1
B. GEOMETRY OF FIRE ...1
C. SENSOR NETWORK ...3
D. THESIS OBJECTIVE ...5

II. BACKGROUND ..7
A. ASSUMPTIONS ...7

1. Personal Navigation System ..7
2. Tactical Network ..11
3. CQC Considerations ..12

B. CONE OF FIRE ...13
C. ALGORITHMS ...17

1. Reference Coordinate System ...17
2. Model of a Rifleman’s Kinematics ...18
3. Geometry-of-Fire Tracking Algorithm ..24

D. SUMMARY ..28

III. EXPERIMENTAL DESIGN...31
A. HARDWARE COMPONENTS ..31

1. YEI 3-Space Data-Logging Sensor ...31
2. VICON Motion System ..32

B. TEST PLAN ...33
1. Validation of the Sensor’s Accuracy ..34
2. Verification of the Rifleman’s Kinematic Model37
3. Testing of the Geometry-of-Fire Tracking Algorithm38

C. SUMMARY ..40

IV. RESULTS AND ANALYSIS ..41
A. VALIDATION OF THE SENSOR’S ACCURACY41

1. Synchronizing the Collected Data Sets ..41
2. Accuracy of the Sensor’s Estimated Orientations44

B. VERIFICATION OF THE KINEMATIC MODEL47
1. Scaling Factor for the Kinematic Model ..47
2. Trueness of the Kinematic Model ...49

C. TESTING OF THE TRACKING ALGORITHM51
1. Simulation of Moving Friendly Nodes ...51
2. Algorithm’s Ability to Detect Geometry Issues52

D. SUMMARY ..53

V. CONCLUSION AND RECOMMENDATIONS ...55
A. SUMMARY OF CONTRIBUTIONS ...55
B. FUTURE WORK ...56

APPENDIX ...59

 viii

A. SETTINGS FOR THE YEI 3-SPACE DATA-LOGGING SENSOR59
B. MATLAB SCRIPTS FOR VERIFYING THE KINEMATIC MODEL ..61

1. Function for Analyzing the Sensor’s Accuracy61
2. Function for Synchronizing the Collected Data Sets65
3. Main Script File for Implementing the Kinematic Model66

C. PYTHON SCRIPTS FOR TESTING THE TRACKING
ALGORITHM ..77
1. Function for Publishing Node Positions ...77
2. Script File for Implementing Tracking Algorithm78

LIST OF REFERENCES ..87

INITIAL DISTRIBUTION LIST ...89

 ix

LIST OF FIGURES

Figure 1. The prototype system design of the sensor network includes five
components. After [1]. ...4

Figure 2. Radio-based ranging and cooperative navigation demonstrate potential for
solving the indoor positioning problem. From [4]. ..9

Figure 3. Two units use cooperative navigation to refine their positions as they walk
around a closed-loop corridor. From [4]. ...10

Figure 4. A block diagram that depicts the data flow between the network’s core and
the riflemen nodes. After [5]. ...11

Figure 5. The trajectory pattern of a fired round is described by a cone of fire. From
[7]. ..13

Figure 6. A rifleman implements the 300 Mil Rule by placing a thumb on the front-
sight post and extending the pinky finger. After [8], [9].15

Figure 7. Two-dimensional representation of the vectors and angles that are used to
determine if a geometry-of-fire issue exists...16

Figure 8. An M4 carbine mounted to a tripod is used to model a rifleman’s
kinematics. After [12]–[15]. ..19

Figure 9. Four coordinate systems are attached to the weapon system and tripod for
the kinematic model. After [12]–[15]. ...21

Figure 10. Translation vectors between the four coordinate systems that are attached
to the weapon system and tripod. After [12]–[15]. ..22

Figure 11. The main steps of the geometry-of-fire tracking algorithm.25
Figure 12. The 3-Space Data-Logging sensor from YEI Technology tracks the

weapon systems’ orientations for the network. From [15].32
Figure 13. Ground-truth data for the experiments is provided by the VICON motion

system. From [18]. ...33
Figure 14. Sufficient standoff is maintained at both ranges despite the sensor’s

maximum error. After [8]. ...35
Figure 15. The weapon system’s visible laser was held at these various grid

coordinates in order to validate the sensor’s accuracy for estimating static
orientations. After [8]. ..36

Figure 16. The weapon system’s visible laser was moved along the perimeter of this
non-symmetrical polygon in order to validate the sensor’s accuracy for
estimating dynamic orientations. After [8]. ...37

Figure 17. The geometry-of-fire tracking algorithm was tested for these four
situations. After [12]–[15]. ..39

Figure 18. The collected data sets from the sensor and VICON motion system must
be synchronized in order to validate the sensor’s accuracy.42

Figure 19. Synchronizing the data sets from the sensor and VICON motion system
provided a one-to-one comparison of the orientations that are described by
their Euler angles. ..43

Figure 20. An angular error of 5±  causes insufficient standoff at both ranges. After
[8]. ..45

 x

Figure 21. The sensor’s error reduces as the weapon system’s orientation is fixed or
its rate of change is slowed. ...46

Figure 22. A scaling factor adjusted the length of the laser’s vector to ensure that its
endpoint remained in the two-dimensional Cartesian plane as the weapon
system was manipulated. After [12]–[15]. ...48

Figure 23. The model’s description of the weapon system’s orientation as its PEQ-15
visible laser traces the polygon’s perimeter. ..50

Figure 24. An example of the friendly detection script’s output that alerts a rifleman
of a present geometry issue. ...52

Figure 25. The default coordinate system was adjusted to align its coordinate
directions with the NED reference frame as depicted. From [21].59

Figure 26. The sensor’s filter mode, running average, and reference mode were
adjusted as shown. After [21]. ...60

 xi

LIST OF TABLES

Table 1. The sensor’s accuracy for estimating orientations under static and dynamic
conditions. ..44

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ACOG Advanced Combat Optical Gunsight

CQC close quarters combat

GPS Global Positioning System

IMU inertial measurement unit

NED north-east-down

NPS Naval Postgraduate School

NVG night vision goggles

PEQ-15 AN/PEQ-15 Advanced Target Pointer/Illuminator

PNS personal navigation system

ROS Robot Operating System

UWB ultra wideband

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

Accomplishing this thesis was an extremely rewarding experience for me. As a

student at the Naval Postgraduate School, I was presented with a unique opportunity to

merge my military experience with the faculty’s academic knowledge. This enabled me

to explore technology that may provide a tactical advantage to dismounted infantry units.

Having the chance to impact the individual rifleman meant a lot to me as a Marine

infantry officer. This would not have been possible without the support and direction of

my advisors and second reader. My advisor, Zachary Staples, turned this novel idea into a

viable research topic and guided me through the design of the overall system. The

expertise of my co-advisor, Xiaoping Yun, helped me overcome challenges with

developing the kinematic model and tracking algorithm. My second reader, James

Calusdian, offered me daily mentorship and granted me full access to his laboratory

facility and equipment for this research. I am thankful for all of their time and effort

throughout this process.

I would also like to thank my family for their endless encouragement and sharing

this experience with me.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. TECHNOLOGICAL SUPERIORITY IN WAR

A technological advantage in war serves as a force multiplier. The side that

maintains technological superiority is not guaranteed victory, but their forces will be

enhanced and have the capability to be more effective. When all other things are equal,

the side with this technological superiority will have an edge, and sometimes this edge is

all that is needed to tip the scales of war in their favor. In World War I, airplanes bettered

reconnaissance capabilities, and tanks brought shock and mobility to the battlefield. In

the Korean War, helicopters added flexibility for logistical resupplies, medical

evacuations, and command and control nodes. These platforms are examples of newly

developed technologies that provided an edge in war. The purpose of this thesis research

is to develop a sensor network that provides a similar technological advantage to the

individual rifleman.

Dismounted infantry benefit from technological advancements that enable them to

be more effective. The Global Positioning System (GPS), night vision goggles (NVG),

and various rifle optics are notable examples. GPS streamlined land navigation for

dismounted infantry units. NVGs provided more stealth and surprise by enabling military

operations to expand into poorly illuminated conditions. Rifle optics led to improved

marksmanship, target illumination, and an accurate means to acquire targets that cannot

be observed directly or engaged with direct-fire weapon systems. This thesis’ sensor

network will add to these examples by mitigating geometry-of-fire issues for riflemen’s

direct-fire weapon systems. Providing dismounted infantry units with a means to track

their geometry of fires will dramatically enhance their situational awareness.

B. GEOMETRY OF FIRE

Geometry of fire is a constant concern during combat engagements. It is a military

term that refers to the physical offset between the orientations and positions of friendly

units on a battlefield. This offset must be properly maintained at all times in order to

mitigate the potential for fratricide. This concern is engrained into Marine Corps officers

 2

at the Basic Officer Course and Marine riflemen in the Fleet Marine Force. It

incorporates the concept of coordinate systems. Units must be able to describe their

orientations and positions with respect to a common reference frame and ensure that their

weapons’ effects do not interfere with each other. It is a scalable concept that applies to

an individual as much as it does to a unit. Riflemen must be aware of their individual

geometries with respect to their fellow soldiers just like unit leaders must be aware of

their unit’s geometries with respect to their adjacent units.

Geometry of fire is a consideration that affects every phase of an operation. Unit

leaders attempt to mitigate issues with their units’ geometries during the planning phase

by war-gaming their orientations and positions. They typically step through their planned

scheme of maneuver with visual aids to ensure that their geometries are properly

maintained while their mission objectives are being met. For example, a unit leader will

adjust the unit’s plan to flank an objective from west-to-east if he or she knows that an

adjacent unit will establish a support-by-fire position to the east within the range of their

weapons’ effects. In the conduct and exploitation phases, it is everyone’s responsibility to

continuously validate his or her geometries. Individual riflemen must confirm that their

weapons’ effects will not endanger their fellow soldiers before engaging enemy targets,

and unit leaders must confirm their unit’s orientation and position before transitioning to

the next part of their scheme of maneuver.

This continuous validation cycle slows a unit’s tempo. A tactical pause is

typically required if a geometry-of-fire issue exists. An individual rifleman or unit leader

must deliberately slow his or her progress in order to visually confirm that they are not

going to endanger another friendly force. For individual riflemen, this pause can be fluid

as they may just need to visually confirm that their fellow soldiers are safely outside their

weapons’ effects. For unit leaders, this pause can cause their entire unit to hold its

advance as a hasty map study may be required to ensure that their unit is maintaining its

proper offsets. Regardless, these pauses take away time and focus from friendly units on

the battlefield. This cycle becomes especially challenging and tedious when a unit

encounters friction or when the battlespace is cluttered. In an urban environment or

aboard a ship, individual rifleman may not be able to see and communicate directly with

 3

everyone else in their unit. This increases the potential for a geometry issue and slows the

unit’s momentum even more.

Military operations in an urban environment and aboard a ship are the most

daunting with respect to geometry of fires. These environments require specialized tactics

that are generally known as close quarters combat (CQC). CQC is a military and law

enforcement term that refers to small-unit engagements that take place within short

ranges. This type of combat requires riflemen to be decisive, quick and precise with the

employment of their weapon systems. The confined spaces in these environments make it

extremely difficult for friendly units to maintain proper geometry of fires. Clearing

interior rooms of a building or a ship can disorient the most experienced riflemen.

Without direct lines-of-sight to their fellow soldiers or windows to confirm their offsets

with respect to a reference frame, it becomes especially challenging to continuously

validate their geometries. A worst-case example is that a rifleman can be oriented at a

wall with a friendly unit stacked on the other side of it. The potential for this unnerving

scenario can cause hesitation in an environment that demands quick reactions and

decision-making due to its close proximities.

C. SENSOR NETWORK

The goal of this thesis research is to streamline the geometry-of-fire validation

cycle. Arming individual riflemen with technology that can do this will provide them

with an edge during combat. This technology must continuously track every rifleman on

the battlefield without any actions required by the actual riflemen. It must be able to

identify when geometry of fires are conflicted and to inform riflemen when they fail to

maintain proper offsets. Riflemen must retain the ability to fire their weapon regardless of

their geometries. This technology will be designed to improve their situational awareness

and to help riflemen make informed and quick decisions to employ their weapon systems.

It will not serve as a substitute for individual proficiency or training. It should be

considered an added capability similar to the way GPS augments riflemen’s land

navigation skills. This system should give riflemen confidence and reduce hesitation.

Since CQC in an urban environment and aboard a ship demands the most confidence and

 4

least hesitation, this type of combat will be explored to provide a challenging framework

for this research. It will serve as the standard and set any limiting factors as this system is

developed. The assumption is that this technology can be easily adapted to any type of

combat or environment if it works for CQC.

The prototype system design for this sensor network is depicted in Figure 1.

Every rifleman will serve as a friendly node. The network will store and publish their

three-dimensional positions with respect to a common reference frame, and each node

will be responsible for continuously tracking their orientation and position, updating their

position on the network and subscribing to the network’s friendly positions message. This

configuration requires each node to internally compute its relative offsets and to detect

potential geometry issues. Some type of feedback mechanism is required to inform the

riflemen when they are failing to maintain proper geometries. For example, this feedback

mechanism can be a light turning on in the optic of the rifleman who is oriented at

another friendly node. As shown, this design requires five hardware components for each

node: a transmitter/receiver to communicate with the network, a sensor to track position,

a sensor to track orientation, a micro-processor/controller to compute the offsets, and a

feedback mechanism to inform the rifleman.

Figure 1. The prototype system design of the sensor network includes five

components. After [1].

 5

Prototyping this design is the main objective of the thesis. Researching at the

Naval Postgraduate School (NPS) provides a unique opportunity to merge the military

experience of its students with the academic knowledge of its faculty. The integration of

these five components for this specific application is an original idea that was developed

by the students and faculty of the Department of Electrical and Computer Engineering at

NPS. This is the first attempt to develop a technology that may streamline the geometry-

of-fire validation cycle. Evaluating the overall design of this system is necessary before

refining any specific component. Surveying ideal hardware components and analyzing

alternate system designs are supporting efforts to be considered in future work. This

prototyping process is separated into five topics that correspond to the system’s five

components. Two are focused upon in this thesis: tracking the weapon systems’

orientations and internally computing the offsets at each node. All of these topics will be

integrated into a single prototype of the complete system once they have been

individually researched and validated.

D. THESIS OBJECTIVE

The continuous cycle for validating geometry of fires on a battlefield impedes

momentum. A force that can decide and act quicker than their enemy has an advantage,

and the goal of this research is to develop technology that enables this tempo. A network

that can track the positions of individual riflemen and inform them when they are

oriented at friendly units is designed. It provides riflemen with an edge by helping them

to make informed and quick decisions to employ their weapon systems. CQC in an urban

environment and aboard a ship demands the most confidence and least amount of

hesitation regarding weapon’s employment; therefore, CQC serves as a reference frame

and establishes limiting factors for the system design. Rapidly prototyping the design is

the main objective for this research. This is the first attempt to develop this technology,

and validating the overall concept is paramount.

In this thesis, tracking weapon systems’ orientations and computing the offsets

between each node in the network are specifically focused upon. Assume that the

network is properly configured to track and communicate riflemen’s positions for a CQC

 6

operation. The validity of this assumption, the challenges of estimating orientations and

computing offsets, and the algorithms implemented to accomplish these tasks are

discussed in the next chapter. A model of a rifleman’s kinematics and a geometry-of-fire

tracking algorithm were developed to accomplish the objectives of this thesis. The

experimental designs that evaluated this model and algorithm are presented in Chapter

III, where the hardware components that were selected for these experiments and the test

plans that verified the kinematic model and tracking algorithm are detailed. As the

experiments were conducted, challenges were encountered that adjusted the original test

plans. These major challenges and the results from each experiment are summarized in

Chapter IV. These results are concluded in the final chapter, where the original

contribution of this research is emphasized and recommendations for future work are

presented.

 7

II. BACKGROUND

The purpose of this chapter is to review the preliminary work that was required to

conduct the experiments for this thesis. The assumptions that were introduced are

examined in order to show why they are valid suppositions. The problems of tracking

weapon systems’ orientations and computing offsets between friendly nodes in a network

are framed. Finally, the concepts and algorithms used to model a rifleman’s kinematics in

order to detect when riflemen fail to maintain proper geometries are detailed. A common

understanding of this background information is required before introducing the

experimental designs used to verify that these orientations and offsets can be estimated

and computed.

A. ASSUMPTIONS

Assumptions must be made in order to continue this research. According to the

Marine Corps Planning Process, assumptions are only valid if they are logical, realistic

and essential to continue. The risk of accepting assumptions must be universally

understood, and they must be tracked until they are either validated or disproved [2]. In

order to show that they are reasonable suppositions, three assumptions that were

introduced in the previous chapter are examined in this section. First, the feasibility of

developing a reliable personal navigation system (PNS) that can function in GPS-denied

environments for the typical duration of a CQC operation is examined. Second, the

feasibility of configuring a network to track and communicate riflemen’s positions in an

urban environment and aboard a ship is analyzed. Third, the CQC considerations that

impact the system’s overall design are detailed. Full disclosure of these assumptions and

considerations is required in order to properly frame the orientation and offset problems.

1. Personal Navigation System

A PNS must be developed for the network to be able to track riflemen’s positions.

Assuming that a PNS can be created for this specific application is reasonable and

necessary to continue this research. The actual positions of riflemen on a battlefield must

be known before attempting to track the orientations of their weapon systems and to

 8

compute the offsets between their geometries. At first glance, this assumption may seem

straightforward to develop. Its design could be implemented with GPS like many other

military systems. Unfortunately, this PNS is not able to rely solely on GPS due to its

restrictive operating environments. GPS requires at least four unobstructed satellite

signals to determine fixed positions with enough precision to support dismounted infantry

operations [3]. In an urban environment and aboard a ship, receiving four signals may not

be possible. These signals quickly attenuate as they propagate through the walls of

buildings and bulkheads of ships [3]. Tracking indoor positions is extremely challenging,

and this PNS must be reliable, especially in GPS-denied environments.

The feasibility of developing this PNS must be examined further in order to show

that it is a valid assumption. Constructing a network to communicate riflemen’s positions

is pointless if a PNS cannot track their positions inside of buildings and ships. The

technology for this specific application may not currently exist, but the potential for it to

be developed must be shown. Positioning technologies and techniques were surveyed in

order to demonstrate the potential for solving this indoor problem. Foot-mounted inertial

measurement units (IMU’s) can attain meter-level accuracy in GPS-denied environments

with a technique known as zero-velocity updating. This technique corrects the inherent

bias and drift from the sensor’s accelerometer data when the foot stands still [3].

Unfortunately, this level of accuracy can only be maintained for a short duration, and

additional sensors or techniques must be incorporated in order to preserve this accuracy

throughout extended CQC operations. Many of the devices that were researched could

help. Imaging sensors, barometers, and Doppler radars are some examples of these

suitable devices [4]. The overall system must be as lightweight and inexpensive as

possible, and it must not rely on a priori map information [4]. Detailed layouts of

buildings and ships are rarely known prior to an operation. The system cannot rely on

devices that require these types of details or pre-installed infrastructure. Two techniques

that show the most promise and meet these constraints are radio-based ranging and

cooperative navigation [4].

Radio-based ranging relies on portable infrastructure as shown in Figure 2. In the

figure, radios are brought to the scene of an operation by military vehicles [4]. Supporting

 9

elements to the unit conducting the assault are responsible for staging and monitoring

these radios. These elements can remain in fixed locations outside of the buildings and

ships, or they can follow the assaulting unit’s movement and drop the radios within the

buildings and ships. Ranges to individual riflemen can then be estimated

opportunistically to the radios’ transceivers [4]. Ultra wideband (UWB) radios produce

accurate estimates, but their range is limited due to the attenuation of signals as they

propagate through walls and bulkheads [4]. Cooperative navigation helps with this

technique’s limited range.

Figure 2. Radio-based ranging and cooperative navigation demonstrate

potential for solving the indoor positioning problem. From [4].

Cooperative navigation exchanges positioning estimates and uncertainties

between riflemen. Similar to radio-based ranging, this filtering technique

opportunistically incorporates estimates and uncertainties whenever they are available

[4]. This improves and extends positioning accuracy in a decentralized manner [4]. In

Figure 3, the positions of two individuals are tracked as they walk indoors along a closed-

loop path. These individuals are equipped with foot-mounted IMU’s and UWB radios [4].

 10

As shown, their measured trajectories are initially skewed by gross heading errors. By

exchanging their positioning estimates and uncertainties, cooperative navigation helped

to refine their trajectories, reduce their position error by at least 55 percent, and provide

up to one-meter accuracy [4]. Incorporating this technique provided the desired level of

accuracy and maintained it throughout the duration of their walk along the closed-loop

path. A PNS that incorporates cooperative navigation, radio-based ranging and foot-

mounted IMU’s may not be the final solution employed in this research, but these

technologies and techniques demonstrate potential for solving the indoor positioning

problem with less than one meter of error. A PNS can be developed to track riflemen’s

positions for this specific application.

Figure 3. Two units use cooperative navigation to refine their positions as they

walk around a closed-loop corridor. From [4].

 11

2. Tactical Network

A tactical network must be configured to track and communicate each rifleman’s

position in an urban environment and aboard a ship. This network must be able to

exchange data between individual riflemen similarly to the way Blue Force Tracker

connects mobile platforms [5]. It must be a lightweight and affordable design that can be

integrated at the platoon-level. CQC operations require detailed coordination at this unit

size and level of command, but these operations are in environments that can restrict a

network’s reach. Ideally, it is designed as an ad-hoc network that can scale its size to

expand and contract as a unit’s dispersion changes throughout an operation. In addition to

the PNS equipment, this network requires each rifleman to be equipped with a

communications device. This device allows the riflemen’s positions to be tracked and

shared by the network and publishes the positional data to the other network subscribers.

A block diagram of this data flow is shown in Figure 4. Current thesis research at NPS

demonstrates potential for developing a tactical network for this specific application. A

scaled-down version for a fire team was created with XBee Pro radios, Arduino Uno

microcontrollers, Raspberry Pi computers, and the Robot Operating System (ROS) [5].

Figure 4. A block diagram that depicts the data flow between the network’s

core and the riflemen nodes. After [5].

 12

3. CQC Considerations

CQC is an extremely dynamic type of combat that is fought in extremely

challenging environments. Friendly units can be isolated and contained in confined

spaces on a ship or in an urban development. The close proximities in these environments

force friendly units into small-unit engagements with the enemy. As such, senior

leadership must relinquish control to their small unit leaders and must rely on the

initiative of their subordinates to accomplish the mission. Fire teams serve as the building

blocks of an infantry unit. In CQC, these four-man teams often operate independently of

their adjacent and higher units. Their speed, aggression, and cunning are required to

defeat the enemy in these small-unit engagements [6]. Since CQC demands decentralized

control at this level, fire team leaders are responsible for maintaining their unit’s

geometries. They must maintain proper offsets as their fire teams fire and move. Close

proximities and fire teams are the major considerations that impact the system’s overall

design. If a basic prototype can be validated for a fire team operating in confined spaces,

then it provides a viable model that can be expanded for larger units dispersed over larger

areas.

The close proximities in CQC require the system to identify geometry issues as

accurately and quickly as possible. The sensors that were selected and the algorithms that

were designed should be optimized for these two variables. Their level of accuracy and

speed should be maintained for dynamic conditions. In these operations, riflemen rarely

maintain fixed positions and orientations. They constantly move and reorient with their

fire team. The system must be able to track these changes as accurately as possible in

real-time. Additionally, the system must inform riflemen when geometries are conflicted

without any actions required by the riflemen. This improves their situational awareness

and enables them to quickly decide whether to employ their weapon systems. If actions

are required by the riflemen, the system does not streamline the geometry-of-fire

validation cycle. It only makes it more cumbersome. Lastly, the system must be designed

to modularly expand and contract at the fire team level like an infantry unit. As

mentioned, fire teams serve as the building blocks of an infantry unit’s task organization.

A unit can administratively tailor its task organization to a specific mission, and it can

 13

operationally expand and contract its dispersion throughout the mission. As such, the

system must be able to follow suit. Its hardware and software design must mirror an

infantry unit’s administrative task organization and operational dispersion for a CQC

operation.

B. CONE OF FIRE

A weapon system’s cone of fire determines the safety threshold, or offset, that

friendly units must maintain for proper geometries. Cone of fire is a term that describes

the trajectory pattern of a round as it is fired. Each round follows a slightly different path

due to variations in ammunition, vibrations within the weapon system, and changes in

atmospheric conditions [7]. This three-dimensional cone extends from a weapon’s

muzzle to its beaten zone as shown in Figure 5.

Figure 5. The trajectory pattern of a fired round is described by a cone of fire.

From [7].

Riflemen estimate the size of these cones with angular measurements from their

apexes at a weapon’s muzzle. These angles are typically measured in mils, where

1 mil 0.056 degree≈ . The sizes of these cones and their corresponding safety thresholds

depend on the weapon system. As an example, the safety threshold for an M4 carbine’s

cone of fire is 300 mils, or approximately 16.9 degrees. All friendly positions must

maintain an offset of at least 16.9 degrees in any direction for a rifleman to safely engage

targets. The remainder of this research focuses on the M4 carbine and its cone of fire.

Riflemen are standardly issued an M16 rifle or M4 carbine. The same angular

measurement is used for both of these weapon systems’ safety thresholds since the M4

 14

carbine is a short-barrel version of the full length M16 rifle. The shorter length of the M4

carbine makes it more desirable for the confined spaces of a CQC operation. A kinematic

model of a rifleman and a tracking algorithm for geometry of fires were developed with

the M4 carbine and its cone of fire. It is assumed that the model and algorithm can be

easily adapted to other direct-fire weapon systems if they are verified for the M4 carbine.

Geometry-of-fire issues occur when a friendly position is located within a

rifleman’s cone of fire. Currently, riflemen are not provided with any technological

advantage that helps them to identify when this occurs. Marine riflemen are trained to

rely on the 300 Mil Rule in the Fleet Marine Force. This antiquated rule is named after

the 300-mil cone of fire, and it is a quick reference tool that allows riflemen to visually

assess if a friendly position is located within potential trajectories of their rounds. As

shown in Figure 6, placing a thumb on the front-sight post of the carbine and extending

the pinky finger approximates a 300-mil cone of fire. Any friendly position that can be

seen between the front-sight post and extended pinky finger within the M4 carbine’s

maximum effective range is a geometry-of-fire issue. Riflemen are trained to not engage

a target if this occurs. Three major problems are inherent with this rule. First, riflemen’s

hand sizes are not all the same. This causes inaccurate estimations of these safety

thresholds for riflemen whose hands are too big or too small. Second, riflemen must

remove a hand from its firing position in order to estimate these angles. This slows

riflemen’s reaction time for engaging targets in a type of combat that demands minimal

hesitation. Third, riflemen cannot always see the locations of other friendly positions in

an urban environment or aboard a ship. Walls, bulkheads, and other structures can

conceal friendly units from direct line-of-sight even though these structures may not

protect them from a rifleman’s weapon effects.

 15

Figure 6. A rifleman implements the 300 Mil Rule by placing a thumb on the

front-sight post and extending the pinky finger. After [8], [9].

This research attempts to remedy the inherent problems of the 300 Mil Rule. The

goal is to provide a technological advantage to riflemen that identifies when geometries

are conflicted with more precision, without any actions required by the riflemen, and

without the need for direct line-of-sight. An orientation estimation sensor can help to

accomplish this by tracking the pose of each rifleman’s weapon system. Offsets between

friendly nodes in a tactical network can then be computed with the riflemen’s positions

from the PNS and their weapon systems’ poses from these orientation estimation sensors.

The precision of this method is limited by the accuracy of the PNS and the orientation

estimation sensors. No actions are required by the rifleman, and direct line-of-sight is not

needed. A feedback mechanism, like a light in the optic, vibration in the buttstock, or

audible tone in a headset, can alert the riflemen of any geometries issues, and these

offsets can be computed between any friendly nodes in the network regardless of whether

they are directly visible to each other.

The geometries between friendly nodes can be represented by vectors. These

vectors are three-dimensional in order to represent the three-dimensions of a battlefield.

As shown in Figure 7, a vector W


 is used to describe the orientation of a rifleman’s

 16

weapon system, and a vector F


 is used to describe a friendly’s position relative to the

rifleman. An angle φ is derived from the 300 Mil Rule to represent the safety threshold

that surrounds a weapon system’s cone of fire, and the angle θ between F


 and W


 is

compared to φ in order to identify the potential for friendly fire. A geometry-of-fire

issue exists if θ φ≤ . Two scenarios are depicted with top-down views in Figure 7. In

both scenarios, the riflemen are located at the apex of the cones of fire with their weapon

systems oriented straight ahead. The cones of fire are centered along W


with φ on either

side. A geometry-of-fire issue is not present in the scenario on the left since θ φ> . The

rifleman in this scenario can safely engage targets. In the scenario on the right, a

geometry-of-fire issue is present since θ φ≤ , and the rifleman must not engage any

targets.

Figure 7. Two-dimensional representation of the vectors and angles that are

used to determine if a geometry-of-fire issue exists.

 17

Let the rifleman’s positions riflemanp serve as the origin of a three-dimensional

Cartesian coordinate system. The vector W


 extends 500 meters from this origin to the

M4 carbine’s maximum effective range. Its direction is determined by the orientation

estimation sensor. The vector F


 is computed in Cartesian coordinates with

friendly riflemanF p p= −


. The friendly’s position friendlyp is determined by the PNS and

published by the tactical network to the rifleman’s node. The angle φ for the cone of fire

is a known constant that depends on the rifleman’s weapon system. For an M4 carbine,

its constant angle 16.9φ = degrees. The angle θ between vectors F


 and W


 must be

computed. After converting W


 into Cartesian coordinates, we compute the angle θ with

 arctan .
F W

F W
θ

 ×
 =
 ⋅ 

 

  (2.1)

All of these variables, except the known constant for φ , depend on time. These

positions, vectors, and angles must be tracked and updated by the tactical network as the

riflemen move their positions and orientations on a battlefield. A reference frame is

required to efficiently track these changing variables. Each rifleman’s position cannot

serve as the origin to its own reference frame in the network. Tracking all of these

variables in different coordinate systems is too cumbersome, especially for a large

network. Instead, these variables can be tracked in a single common frame. Spatial

descriptions and transformations were investigated to further develop this geometry-of-

fire tracking algorithm. Transformations of these variables were explored, and the

kinematics of a rifleman was modeled.

C. ALGORITHMS

1. Reference Coordinate System

Coordinate systems are used to uniquely describe riflemen’s positions and the

orientations of their weapon systems. Multiple systems are attached to the rigid bodies of

a rifleman and weapon system in order to properly model their kinematics. The

description of their bodies’ positions and orientations can be transformed from one

 18

coordinate system to another. This allows for any of these systems to serve as the

reference frame for the bodies’ kinematics [10]; however, it is important to select a

universal system to serve as a common reference [11]. This makes the transformations

from body to body as convenient as possible. Since this research focuses on tactical

scenarios in localized areas, the North-East-Down (NED) coordinate system is an

appropriate reference frame for this application. It serves as an inertial system with its x-

axis aligned with earth’s magnetic north, y-axis aligned with east and z-axis pointing

straight down. All of the positions, vectors and angles can be described relative to the

NED coordinate system, allowing the tactical network to efficiently track changes on a

battlefield in a single common reference frame. Transformation operators were defined

for a rifleman’s kinematic model in order to describe these variables with respect to the

NED coordinate system.

2. Model of a Rifleman’s Kinematics

Kinematics is a science of motion. It ignores the forces that actually cause motion

and focuses on the study of position and its higher-order derivatives with respect to time

[10]. It allows the geometrical properties of a rigid body to be described as the body

moves [10]. In order to fully develop a tracking algorithm, the kinematics of a rifleman

must be modeled. The goal is to describe the position and orientation of a weapon system

as it is manipulated by a rifleman. For this model, an M4 carbine mounted to a tripod

represents a direct-fire weapon system being carried by a rifleman. The tripod simplifies

the kinematics of the model by reducing the number of degrees of freedom and allows the

M4 carbine to be held in fixed positions and orientations. A rifleman cannot hold a

weapon system perfectly steady. This induces human error into the model of the weapon

system’s positions and orientations. Removing this human error with the tripod helps

with the verification of the kinematic model and the validation of the orientation

estimation sensor’s accuracy. A depiction of the M4 mounted to a tripod is shown in

Figure 8.

 19

Figure 8. An M4 carbine mounted to a tripod is used to model a rifleman’s

kinematics. After [12]–[15].

Four coordinate systems are attached to this configuration. The weapon system

and tripod each require two systems in order to properly model their translations and

rotations. Their corresponding systems are shown in Figure 9. The weapon system

consists of the M4 carbine, Advanced Combat Optical Gunsight (ACOG), AN/PEQ-15

Advanced Target Pointer/Illuminator (PEQ-15), and YEI 3 Space orientation estimation

sensor. Its {L} coordinate system for the PEQ-15 and {S} coordinate system for the

sensor can completely describe its kinematics. It is standard practice in the military to

bore-sight the PEQ-15’s visible laser to the carbine’s barrel and aim point of the ACOG’s

reticle. Bore-sighting aligns the laser, barrel, and reticle’s aim point and allows the laser

to serve as an auxiliary aim point in CQC. In close proximities, riflemen are trained to

 20

keep their weapon system in a ready position and to engage targets while aiming with the

PEQ-15’s laser. This reduces the amount of time that it takes to engage a target since

riflemen can look over their scopes and do not need to sight-in with their ACOG’s reticle.

The assumption is that their weapon systems are oriented where their lasers point. As

such, the weapon system does not require three separate coordinate systems for each of

these components. Its orientation can be modeled with {L} only. Even though it is also

fixed to the carbine’s rigid body, the sensor requires its own coordinate system in order to

track the weapon system’s orientation. Its axes may not perfectly align with {L} as it is

mounted; therefore, its coordinate system {S} is needed to negate this initial rotational

offset.

The tripod has two joints that are physically offset and allow for its yaw and pitch

rotations. These joints require separate coordinate systems in order to properly model the

tripod’s rotations. The bottom joint allows for its yaw rotations, or rotations from left to

right, and the top joint allows for its pitch rotations, or rotations up and down. The {Y}

and {P} coordinate systems are attached, respectively, to these joints. The tripod does not

allow for roll rotations, or rotations about the axis of the weapon system’s barrel. This

limitation is appropriate since it is not practical to change a weapon system’s aim point

with a roll. Doctrinal firing positions ideally have no rotation about the x-axes, or axes

along the weapon system’s barrel. The z-axes should remain perpendicular to the ground,

and the y-axes should remain parallel to the ground. Riflemen are trained to implement

yaws and pitches to change their weapon system’s aim point. Since rolling is not

practically desirable, ignoring these rotations is justifiable for this model. As a result, the

kinematics of this configuration can be completely modeled with the {L}, {S}, {Y}, and

{P} coordinate systems.

 21

Figure 9. Four coordinate systems are attached to the weapon system and

tripod for the kinematic model. After [12]–[15].

The translations and rotations from each coordinate system can be described with

transformation operators. These operators are 4 4× matrices that represent homogeneous

transforms and represent functions that map a description from one coordinate system to

another [11]. This links the systems together by mapping the rotations and translations

between their coordinate descriptions. These operators incorporate an orthonormal 3 3×

matrix that maps the rotations and a 3 1× vector that maps the translations. The

translation vectors describe the position of a coordinate system’s origin with respect to

another. This links the origins of each system together and ultimately allows the position

of each coordinate system to be described relative to the NED reference frame through

compound transformations. These translation vectors are shown in Figure 10.

 22

Figure 10. Translation vectors between the four coordinate systems that are

attached to the weapon system and tripod. After [12]–[15].

The general form of a transformation operator for two arbitrary coordinate systems {A}

and {B} is

 .
0 0 0 1

A A
A B B
B

R O
T

 
=  
 

 (2.2)

The rotation matrix A
B R describes the rotation of {B} relative to {A} with Euler angles,

and the translation vector A
BO describes the position of {B}’s origin relative to {A} with

three-dimensional Cartesian coordinates [11]. The yaw, pitch, and roll angles from the

 23

rotation matrix are measured in degrees and denoted with α , β , and γ , respectively.

The Cartesian coordinates from the translation vector are measured in meters and denoted

with A
Bx , A

By , and A
Bz . These operators were defined for each pair of coordinate

systems that are physically linked in the rifleman’s kinematic model.

This configuration requires four transformation operators NED
YT , Y

PT , P
LT , and L

ST .

The operator NED
YT describes the tripod’s yaw rotations with respect to the NED reference

frame and the height of the tripod’s bottom joint from the floor. The operator Y
PT

describes the tripod’s pitch rotations with respect to the NED reference frame and the

offset between the tripod’s top and bottom joints. The operator P
LT does not account for

any rotations since the weapon system is fixed to the mounting plate on the tripod’s top

joint. Its rotation matrix is an identity matrix. This operator only describes the offset

between the PEQ-15 and the tripod’s top joint. Similarly, the operator L
ST only describes

the offset between the sensor and the PEQ-15. These operators are defined as

() ()
() ()

cos sin 0
sin cos 0

,
0 0 1
0 0 0 1

NED
Y

NED
NED Y

Y NED
Y

x
y

T
z

α α
α α

 −
 − − =
 
 
 

 (2.3)

() ()

() ()

cos 0 sin
0 1 0

,
sin 0 cos

0 0 0 1

Y
P

Y
Y P
P Y

P

x
y

T
z

β β

β β

 
 
 =
 −
 
 

 (2.4)

1 0 0
0 1 0

,
0 0 1
0 0 0 1

P
L

P
P L
L P

L

x
y

T
z

 
 
 =
 
 
 

 (2.5)

 24

and

1 0 0
0 1 0

.
0 0 1
0 0 0 1

L
S

L
L S
S L

S

x
y

T
z

 
 
 =
 
 
 

 (2.6)

Since the weapon system is assumed to be oriented where the PEQ-15’s laser is aiming,

these transformation operators are able to describe the PEQ-15’s position and orientation

relative to the NED reference frame. Even though the PEQ-15’s coordinate system {L} is

not directly linked to {NED}, it can still be described relative to the reference frame

through compound transformations. Compound transformations chain these operators

together through matrix multiplication [11]. The operator NED
LT describes the weapon

system’s position and orientation relative to the NED reference frame and is computed

with

 .NED NED Y P
L Y P LT T T T= (2.7)

These five transformation operators complete the model of a rifleman’s

kinematics. Four coordinate systems were attached to the M4 carbine mounted to a

tripod. The five operators link these systems together and describe the weapon system’s

position and orientation with respect to the NED reference frame. This kinematic model

needs to be verified before it is implemented in the geometry-of-fire tracking algorithm.

An experiment was designed to compare the model’s description of the weapon system

with ground-truth data, and this design is addressed in the next chapter. Refinement of

this model is also recommended for future work. The tripod from this configuration must

eventually be replaced by an actual human body. Modeling a human body’s degrees of

freedom is challenging but is critical for describing a weapon system’s kinematics as a

rifleman manipulates it during an actual CQC operation.

3. Geometry-of-Fire Tracking Algorithm

The algorithm for tracking geometry of fires must be able to identify when a

friendly position is located within a rifleman’s cone of fire. This algorithm is separated

 25

into three main steps. First, a reference orientation for the weapon system is determined

from the sensor’s initial readings. Second, the weapon system’s orientation is tracked as

it is manipulated throughout a CQC operation. Third, the geometries between friendly

nodes are computed as the weapon system’s orientation and friendly positions change. As

discussed, a geometry-of-fire issue exists if θ φ≤ . A flow chart of this algorithm is

shown in Figure 11.

Figure 11. The main steps of the geometry-of-fire tracking algorithm.

 26

The sensor provides estimated orientations of the weapon system with respect to

{S}. Since the sensor’s axes rarely align with the NED reference frame at the start of a

CQC operation, a reference orientation is determined to describe their initial rotational

offset. This reference orientation allows the misalignment between {S} and {NED} to be

negated and a rifleman to carry their weapon system in any pose at the start of an

operation. All subsequent orientations are described relative to this reference. In order to

determine this reference orientation, the weapon system is held in a fixed pose. An initial

set of quaternions is collected from the sensor to estimate the weapon system’s starting

orientation with respect to the NED reference frame. These quaternions are converted

into a rotation matrix. This matrix describes the weapon system’s reference orientation

and its initial offset to the NED reference frame. This rotation matrix
o

NED
S R is computed

from the mean quaternion of the set with

2 2
0 1 1 2 0 3 1 3 0 2

2 2
1 2 0 3 0 2 2 3 0 1

2 2
1 3 0 2 2 3 0 1 0 3

2 1 2 2 2 2 2
2 2 2 1 2 2 2 ,
2 2 2 2 2 1 2

o

NED
S

q q q q q q q q q q
R q q q q q q q q q q

q q q q q q q q q q

 − + + −
 = − − + + 
 + − − + 

 (2.8)

where the quaternion q is defined as the sum 0 1 2 3i j kq q q q q= + + + and i, j, and k

represent the standard orthonormal basis of a three-dimensional space [16].

The weapon system’s pose can be tracked throughout an operation once this

reference orientation is determined. As the weapon system is manipulated, the sensor

continues to collect quaternions. These quaternions are converted into rotations matrices

with the same computations that are used for the reference orientation. The rotation

matrix
i

NED
S R describes these subsequent orientations of the weapon system. This matrix

is updated for each quaternion, and compound transformations can describe these

subsequent orientations with respect to the reference orientation. It is important to note

that the orthonormal properties of these rotation matrices allow for the descriptions of

these matrices to be easily inverted. Transposing
o

NED
S R computes the rotation matrix

oS
NED R that describes the NED reference frame relative to the weapon system’s reference

orientation [11]. This inverted description is needed to determine the rotation matrix o

i

S
S R

 27

that describes the subsequent orientations of the weapon system with respect to its

reference orientation. This rotation matrix o

i

S
S R is computed with

 () .o

i o i

TS NED NED
S S SR R R= (2.9)

The Euler angles that describe these subsequent rotations are determined from this

matrix.

These Euler angles are needed to compute the special homogeneous

transformation operators that track the weapon system’s changing orientation. The

standard Z-Y-X angle convention is used for this algorithm [11]. The special operators

()ZT α and ()YT β are computed from these angles. These operators describe the weapon

system’s yaw and pitch rotations, respectively, as a rifleman manipulates the weapon

system. They are incorporated into (2.7) in order to track these rotations about {L}’s

fixed axes. The compound transformation equation for NED
LT is modified to

 ()() ()().NED NED Y P
L Y Z P Y LT T T T T Tα β= (2.10)

The Euler angles that are required for these two special operators are determined from
o

i

S
S R . Given

11 12 13

21 22 23

31 32 33

,o

i

S
S

r r r
R r r r

r r r

 
 =  
  

 (2.11)

the angles α and β can be computed with

()

()
23 13

2 2
31 32 33

arctan 2 / sin , / sin

arctan 2 , .

r r

r r r

a β β

β

=

= +
 (2.12)

These equations bound the pitch angle to 0 180β≤ ≤  . It is important to note that the

solution for α does not exist when 0β =  or 180β =  . When this is the case, the angle

α is set to zero [11].

 28

The geometries between friendly nodes can now be computed from the modified
NED

LT . As detailed in the cone of fire discussion, vectors represent these geometries, and

the angle θ between two friendly nodes is computed with (2.1). If θ φ≤ , then a friendly

node is located within the weapon system’s cone of fire, and the rifleman must be alerted

by a feedback mechanism that a geometry-of-fire issue exists. Again, the vector W


extends from the weapon system’s muzzle to its maximum effective range along the x-

axis of {L}. This vector is computed for each modification to NED
LT . If oW


 represents this

vector at the weapon system’s reference orientation, then W


 can be computed with

 .NED
L oW TW=

 
 (2.13)

This vector W


 is compared to F


 with (2.1) for every friendly node in the network. This

comparison is conducted for the duration of the operation as the weapon system’s

orientation and friendly positions change. Once the operation is completed, this algorithm

terminates. An experiment was designed to test that this algorithm properly detects

geometry-of-fires issues. A major consideration that needs to be addressed is when this

comparison should be conducted. Should this loop be time or event-based? If it should

be event-based, should it be executed when the weapon system’s orientation changes,

when the friendly positions change or when either of these events change? This

experiment’s design and consideration is addressed in the next chapter.

D. SUMMARY

A common understanding of the background knowledge required for this

research’s experimental design was provided in this chapter. Essential assumptions were

examined and the problem for tracking a weapon system’s orientations and computing

geometries between friendly nodes was framed. Even though the technology for an

inertial PNS does not currently exist, the potential for it to be developed was shown with

foot-mounted IMU’s, radio-based ranging, and cooperative navigation. Current thesis

research at NPS also demonstrates the potential for developing a tactical network that

tracks and communicates this positional data in an urban environment and aboard a ship.

 29

This system’s design is impacted by CQC considerations that narrow its scope to fire

teams operating at the tactical level and in localized areas. This allows the NED

coordinate system to serve as an inertial reference frame for the kinematic model and

tracking algorithm that were introduced. This model and algorithm were verified by

experiments that are discussed in the next chapter. Once they are integrated into the

overall system’s design, they will help to replace the antiquated 300 Mil Rule with a

technology that streamlines the continuous validation cycle for geometry of fires.

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

III. EXPERIMENTAL DESIGN

The purpose of this chapter is to detail the experiments that were conducted for

this research. As discussed in Chapter I, two elements of the tactical network are focused

upon in this thesis: tracking the weapon system’s orientation and computing the

geometries between friendly nodes. An experiment was conducted for each element in

order to verify its design for the system’s prototype. The rifleman’s kinematic model was

verified for tracking the weapon system’s orientation, and the geometry-of-fire tracking

algorithm was tested for computing the geometries between friendly nodes. Before

conducting these experiments, the sensor’s accuracy for estimating orientations needed to

be validated. The hardware components that were selected for these experiments are

discussed and the test plans that validated the sensor’s accuracy, verified the kinematic

model, and tested the tracking algorithm are detailed in this chapter.

A. HARDWARE COMPONENTS

Two hardware components are discussed before detailing the test plans: the YEI

3-Space Data-Logging sensor that was selected to track the weapon system’s orientations

and the VICON motion system that was used to provide ground-truth data. The product

overviews of these components and why they were chosen for these experiments are

summarized in this section.

1. YEI 3-Space Data-Logging Sensor

The 3-Space Data-Logging sensor from YEI Technology was selected to track the

weapon systems’ orientations for the network. It was mounted to the weapon system as

shown in Figure 8 and collected the quaternions that were discussed in the geometry-of-

fire tracking algorithm. A technical brief published by YEI Technology states that their

miniature sensor is a highly precise and reliable IMU [17]. It uses proprietary quaternion-

based Kalman filtering algorithms to estimate orientation from its gyroscope,

accelerometer, and magnetic measurements [17]. This estimation can be determined

relative to a desired coordinate system, and the sensor ensures optimal precision and

accuracy by incorporating confidence intervals into its algorithms [17]. Based on its

 32

product specifications, the IMU’s orientation estimations are accurate within 1±  for

dynamic conditions and all orientations [17]. The 3-Space Data-Logging sensor and its

dimensions are shown in Figure 12. With the rapid prototyping mindset, this IMU was

selected without further analysis or comparison to other like devices. It claimed enough

accuracy for this geometry-of-fires problem, and it was designed to return quaternions

that have been filtered and are relative to a specifiable coordinate system. Its level of

accuracy needed to be verified, but, otherwise, it met all of the initial requirements off-

the-shelf and was readily available in the Department of Electrical and Computer

Engineering’s Control Systems Laboratory at NPS.

Figure 12. The 3-Space Data-Logging sensor from YEI Technology tracks the

weapon systems’ orientations for the network. From [15].

2. VICON Motion System

The VICON motion system was selected to provide ground-truth data for the

experiments discussed in this thesis. As shown in Figure 13, it is a motion capture system

consisting of a camera suite and software interface. This system conducts real-time

precision tracking of an object’s movements with a technique known as optical-passive

motion capturing [18]. This technique uses infrared cameras to track reflective markers

that were fixed to the weapon system. The cameras are high-speed and optimized for

high-resolution motion capture [18]. This allows the system to track subtle and quick

 33

movements and to describe the position of the reflective markers with millimeter

accuracy [19]. It reconstructed the cameras’ two-dimensional observations to accurately

describe the weapon system’s three-dimensional motion. The VICON motion system is

marketed for a wide variety of applications from entertainment to engineering. For this

specific application, it served the same purpose as the YEI 3-Space Data-Logging sensor.

It tracked the weapon system’s orientation for the network and provided the geometry-of-

fire tracking algorithm with Euler angles to compute its special homogeneous

transformation operators. The weapon system’s orientations that were described by the

sensor’s quaternions were compared to these ground truth orientations in order to validate

the sensor’s accuracy and verify the rifleman’s kinematic model.

Figure 13. Ground-truth data for the experiments is provided by the VICON

motion system. From [18].

B. TEST PLAN

Prototyping the system’s design was one of the main objectives of this research.

The two elements that serve as this thesis’ focus must be validated before they can be

integrated into this prototype. As mentioned, three experiments were conducted to

evaluate these elements. First, the accuracy of the sensor’s orientation estimations was

 34

determined. Second, the model of the rifleman’s kinematics was verified for tracking the

weapon system’s pose. Third, the geometry-of-fire tracking algorithm was tested for

computing the geometries between friendly nodes. The test plans that were developed to

complete these three experiments are summarized in this section.

1. Validation of the Sensor’s Accuracy

The accuracy of the YEI 3-Space Data-Logging sensor needed to be validated

before verifying the kinematic model and tracking algorithm. YEI Technology boasts that

its IMU’s orientation estimations are accurate within 1±  [17]. If this level of accuracy is

maintained for dynamic conditions and all orientations, then the maximum error for a

weapon system’s orientation in any direction is 0.18 meters at a ten-meter range and 8.73

meters at a 500-meter range. As discussed with the CQC considerations, a range of ten

meters or less are used for this design’s proof-of-concept, and the 500-meter range

corresponds to the maximum effective range for an M4 carbine. The sensor’s maximum

errors are acceptable based on the average width of a man’s shoulders and the width of an

M4 carbine’s safety threshold at these ranges. When riflemen conduct their

marksmanship qualification ranges, they are taught that the average width of a man’s

shoulders is 19 inches. Since 0.18 meters is equal to seven inches, only one-third of a

man’s torso can be errantly within a weapon system’s safety threshold at a ten-meter

range. At the 500-meter range, an M4 carbine’s safety threshold is 152 meters wide,

which is much larger than the potential 8.73-meter error. Both of these widths provide

sufficient offset from the weapon system’s centerline aim point to keep the operational

risk at an acceptable level. If geometry-of-fire issues are not detected due to the sensor’s

maximum errors, friendly nodes still have enough standoff to be safe from a weapon

system’s munitions effects. This standoff is depicted at both ranges in Figure 14. The

desired safety threshold for an M4 carbine’s cone of fire is depicted with the red circle,

and the standoff that remains with the sensor’s maximum error is depicted with the blue

circle.

 35

Figure 14. Sufficient standoff is maintained at both ranges despite the sensor’s

maximum error. After [8].

This level of accuracy needed to be validated for static and dynamic conditions.

As such, this experiment was separated into two parts. The sensor’s maximum error was

determined within the ten-meter range under both of these orientation conditions. It was

computed by comparing the sensor’s estimations to the VICON system’s ground-truth

data with (2.1). Vector W


 represents the sensor’s estimations, and vector F


 represents

the VICON system’s ground-truth data. The sensor’s angular error was evaluated at

various orientations. A two-dimensional Cartesian plane was used to compute this error

at precise and repeatable orientations. The weapon system was mounted to the tripod at a

fixed position, and this plane was set up orthogonal to {L}’s x-axis. The weapon system’s

visible laser pointed at the plane’s origin when the weapon system was in its reference

orientation. The sensor’s error was evaluated for static orientations by collecting data,

while the weapon system’s visible laser was fixed on grid coordinates in each quadrant of

the plane. For dynamic orientations, data was collected while the visible laser was moved

along the perimeter of a non-symmetrical polygon that spanned multiple quadrants of the

 36

plane. Given that the weapon system was properly bore sighted, the sensor’s accuracy

was confirmed if 1θ ≤  for both orientation conditions.

The setup to evaluate the sensor’s accuracy for estimating static orientations is

depicted in Figure 15.

Figure 15. The weapon system’s visible laser was held at these various grid

coordinates in order to validate the sensor’s accuracy for estimating
static orientations. After [8].

The setup to evaluate the sensor’s accuracy for estimating dynamic orientations is

depicted in Figure 16.

 37

Figure 16. The weapon system’s visible laser was moved along the perimeter of

this non-symmetrical polygon in order to validate the sensor’s accuracy
for estimating dynamic orientations. After [8].

2. Verification of the Rifleman’s Kinematic Model

The rifleman’s kinematic model needed to be verified before it was implemented

in the geometry-of-fire tracking algorithm. This experiment compared the model’s

description of the weapon system to ground-truth data as the weapon system was

manipulated. This comparison was conducted with the same setup that is shown in Figure

16. The experiment that was designed for validating the sensor’s accuracy under dynamic

conditions was repeated, but this repetition evaluated the model’s trueness instead of the

sensor’s accuracy. When the experiment was conducted to evaluate the sensor’s

accuracy, the objective was to compute the angular difference between W


 and F


. When

it was conducted to evaluate the model’s trueness, the objective was to compute the

angular difference between these vectors and the perimeter of the polygon that was

 38

traced. Given that F


 followed the polygon’s perimeter, the kinematic model was

confirmed if the sensor’s angular difference was less than or equal to its error for

dynamic conditions.

Three considerations were taken into account to prevent additional causes of

error. Again, the weapon system was properly bore sighted in order to assume that it was

oriented where the visible laser was aiming. Additionally, the polygon’s perimeter was

traced as accurately as possible, and the two-dimensional Cartesian plane was constructed

and set up as precisely as possible. Human error was inherent in this experiment since the

weapon system was manipulated to trace the polygon’s perimeter. Using the tripod

mitigated this as much as possible. If the plane was canted or not orthogonal to {L}’s x-

axis, then the orientations of W


 and F


 would have been skewed. The vector F


 was

used to see if these considerations caused additional error. If this vector failed to follow

the polygon’s perimeter, then these considerations were checked before concluding that

the kinematic model was not describing the weapon system’s motion as desired.

3. Testing of the Geometry-of-Fire Tracking Algorithm

The geometry-of-fire tracking algorithm had to be tested before the elements of

this thesis could be integrated into the overall system’s prototype. Once the sensor’s

accuracy was validated and the kinematic model was verified, this experiment ensured

that the geometries between friendly nodes were properly computed. The objective for

this experiment was to verify that the tracking algorithm properly identifies when

geometry-of-fire issues are present. The VICON motion system was no longer required.

The kinematic model and tracking algorithm were integrated with the tactical network

that was mentioned in Chapter II. Similar to the scaled-down version of this network, a

fire team was represented by four nodes constructed with XBee Pro radios, Arduino Uno

microcontrollers, Raspberry Pi computers and ROS [5]. The XBee Pro radios and

Arduino Uno microcontrollers communicated the positional data of each node as shown

in Figure 4, and the Raspberry Pi computers and ROS executed the tracking algorithm

and allowed the geometries between the nodes to be computed. One of the nodes was

designated as the rifleman, and the remaining nodes were considered three friendly

 39

soldiers. This experiment was conducted in a 10 10× meter area and tested the tracking

algorithm for these four situations:

• All nodes at fixed positions

• The rifleman at a fixed position with moving friendly nodes

• The friendly nodes at fixed positions with a moving rifleman

• All nodes moving.

Without an inertial PNS, the positional data of each node was manually fed into

the algorithm. Fixed positions were entered manually, and moving positions were

simulated. These positions were three-dimensional Cartesian coordinates with respect to

the selected NED reference frame. Enclosed in the appendix is the friendly detection

script file that incorporated this positional data and implemented the tracking algorithm.

For the moving positions, the path of each node was predetermined and programmed into

this script file. The four situations are depicted in Figure 17.

Figure 17. The geometry-of-fire tracking algorithm was tested for these four

situations. After [12]–[15].

 40

For each of these situations, the weapon system’s orientation was moved from node to

node verifying that geometry issues were identified when the laser moved within 16.9

degrees of a node from any direction.

C. SUMMARY

The experiments that were designed for this thesis were detailed in this chapter.

Three experiments needed to be conducted before integrating the elements of this thesis

into the system’s prototype. These experiments validated the accuracy of the YEI 3-

Space Data-Logging sensor, verified the rifleman’s kinematic model, and tested the

geometry-of-fire tracking algorithm. The desired end state was that the tracking algorithm

properly identified geometry issues for the four situations that were discussed. The

VICON motion system was used to provide ground-truth data in order to evaluate the

sensor’s accuracy and the model’s trueness. The results and analysis from these

experiments are discussed in the next chapter. Ideally, the sensor’s accuracy remained

within 1±  for dynamic conditions and all orientations. The kinematic model properly

described the weapon system’s motion, and the tracking algorithm detected geometry

issues when the weapon system’s laser moved within 16.9 degrees of a friendly node.

 41

IV. RESULTS AND ANALYSIS

The three experiments that were designed for this thesis build on each other and

were conducted sequentially. The sensor needed to accurately estimate the weapon

system’s orientations in order to verify the rifleman’s kinematic model, and the kinematic

model needed to properly describe the weapon system’s motion in order to test the

geometry-of-fire tracking algorithm. As these experiments were conducted, each

experiment presented a major challenge. These challenges required adjustments to the

original test plans in order to progress from one experiment to the next. The major

challenges that were encountered and the results from each experiment are detailed in this

chapter.

A. VALIDATION OF THE SENSOR’S ACCURACY

1. Synchronizing the Collected Data Sets

The major challenge for validating the sensor’s accuracy under dynamic

conditions was synchronizing the collected data sets from the sensor and the VICON

motion system. The VICON motion system collected measurements at a different

sampling rate and collected measurements for a longer period of time due to the

procedural constraints of the experiment. The VICON motion system started collecting

measurements before the sensor and stopped collecting measurements after the sensor.

These considerations caused the data sets to contain different numbers of samples and

prevented a one-to-one comparison of their corresponding orientations. The different

number of samples and lack of one-to-one relationship is shown with plots of the Euler

angles from the sensor and VICON motion system in Figure 18.

 42

Figure 18. The collected data sets from the sensor and VICON motion system

must be synchronized in order to validate the sensor’s accuracy.

The data sets from the sensor and VICON motion system were synchronized in

two steps. First, the extra measurements at the beginning and end of the VICON’s data

set were truncated. Second, both of their sampling frequencies were normalized to digital

frequencies with natural units. In order to truncate the VICON’s data set, an abrupt and

distinguishable manipulation of the weapon system was implemented at the beginning

and end of each data collection. For example, each trail started and ended with a large

yaw to and from the weapon system’s reference orientation. These rotations produced

distinguishable local maximums or minimums in both data sets that indicated the start

and stop of the weapon system’s manipulation and allowed for the extra measurements to

be ignored. In order to normalize their different sampling frequencies, each data set’s

digital frequency was computed with

 2 n
N

ω π= (4.1)

0 1000 2000 3000 4000 5000 6000 7000 8000
-20

-10

0

10

Y
aw

 α

VICON
Sensor

0 1000 2000 3000 4000 5000 6000 7000 8000
-2

0

2

4

P
itc

h
β

0 1000 2000 3000 4000 5000 6000 7000 8000
-200

0

200

R
ol

l γ

Samples n

 43

where ω is its digital frequency in radians per sample, n is the index of an individual

sample, and N is the total number of samples in the set. This rationalized the samples’

indices in both data sets to an interval of []0,2π . Truncating the VICON’s measurements

and normalizing to digital frequencies synchronized the collected data. As shown in

Figure 19, both data sets start and stop with the yaw’s local minimums, and their

samples’ indices are rationalized to an interval of []0,2π . This allowed for a one-to-one

comparison of the orientations that were described by the sensor’s estimations and

VICON’s measurements.

Figure 19. Synchronizing the data sets from the sensor and VICON motion

system provided a one-to-one comparison of the orientations that are
described by their Euler angles.

0 1 2 3 4 5 6
-20

-10

0

10

Y
aw

 α

VICON
Sensor

0 1 2 3 4 5 6
-2

0

2

4

P
itc

h
β

0 1 2 3 4 5 6
-200

0

200

R
ol

l γ

Digital Freq ω [0,2π]

44

2. Accuracy of the Sensor’s Estimated Orientations

The desired end state for this experiment is that the sensor’s error remained within

1±  for dynamic conditions and all orientations. This experiment was conducted in two

parts in order to evaluate the sensor’s accuracy at various orientations for both static and

dynamic conditions. Its error was determined by computing the angular difference

between the sensor’s estimated orientations and the VICON’s ground-truth data. The

sensor’s accuracy was validated for static conditions, but it did not meet YEI

Technology’s product specifications for dynamic conditions. The sensor’s maximum

error that was recorded for both conditions is listed in Table 1.

Table 1. The sensor’s accuracy for estimating orientations under static and
dynamic conditions.

Static Conditions Dynamic Conditions
Sensor Error 0.33±  4.07± 

The decrease in accuracy for dynamic conditions was caused by lag from the

sensor’s onboard filtering processes. As mentioned, it implements Kalman filtering

algorithms to estimate orientations from its gyroscope, accelerometer, and magnetic

measurements [17]. Its filter update rates are as slow as 200 Hz [15]. This caused the

sensor’s estimates to lag behind the weapon system’s actual orientations as the weapon

system was manipulated quickly. Rounding the dynamic error to the next whole number

of 5±  translates to an offset error of 0.88 meters at a ten-meter range and 43.74 meters at

a 500-meter range. At the ten-meter range, two men can stand errantly within an M4

carbine’s safety threshold. At a 500-meter range, the distance error is more than half of

the safety threshold’s radius. Neither of these widths provides sufficient offset from the

weapon system’s centerline aim point and munitions effects. These standoffs for dynamic

conditions are depicted at both ranges in Figure 20. Again, the desired safety threshold

for an M4 carbine’s cone of fire is depicted with the red circle, and the standoff that

remains with the sensor’s maximum error is depicted with the blue circle.

 45

Figure 20. An angular error of 5±  causes insufficient standoff at both ranges.

After [8].

The sensor’s accuracy met its product specifications when the weapon system was

fixed in a static orientation or when it slowly traced the perimeter of the polygon from

Figure 16. For these experiments, manipulating the weapon system “slowly” meant that

its orientation was changed at a rate of no more than one degree per second. These

conditions allowed for the sensor’s error to be reduced to its product specifications when

the weapon system was being manipulated quicker than this rate. Momentarily fixing the

weapon system’s orientation or slowing its rate of change provided the sensor’s estimates

time to overcome the lag from its filter method and to catch up to the weapon system’s

actual orientations. For example, the weapon system’s orientation was momentarily fixed

on a point along the polygon’s perimeter, or its rate of change was slowed as it traces a

corner. During an actual CQC operation, these actions mimic a rifleman acquiring a

doctrinal firing position and sighting-in on a target. Riflemen are trained to slow their

movement as much as possible in order to provide themselves with enough stability to

precisely and accurately engage a target. The reduction in error from these actions is

shown in Figure 21. As the weapon system’s orientation fixed on a point or its rate of

 46

change slowed to trace a corner, the sensor’s error decreased toward its product

specifications.

Figure 21. The sensor’s error reduces as the weapon system’s orientation is

fixed or its rate of change is slowed.

Determining the sensor’s accuracy for both static and dynamic conditions allowed

for progression to the next experiment. The sensor’s error for estimating orientations was

used to verify the rifleman’s kinematic model. Its product specification was validated for

static conditions, and it was obtainable for dynamic conditions with actions that mimic

how a weapon system is realistically manipulated in a CQC operation. Regardless, the

sensor’s accuracy for estimating orientations under dynamic conditions was not ideal. As

discussed, this IMU was selected without further analysis or comparison to other like

devices. A survey of technology is recommended for future work in order to determine

the best IMU for this specific application. Filtering this IMU’s raw measurements may

100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

Digital Freq ω

A
ng

ul
ar

 E
rro

r (
de

gr
ee

)

47

also be required in order to optimally reduce the lag produced by any onboard filter

methods.

B. VERIFICATION OF THE KINEMATIC MODEL

1. Scaling Factor for the Kinematic Model

The major challenge for verifying the rifleman’s kinematic model was projecting

the weapon system’s orientation vector onto the two-dimensional Cartesian plane. The

experiment for validating the sensor’s accuracy was repeated, but the objective for this

iteration was to evaluate the model’s description of the weapon system’s motion. The

PEQ-15’s visible laser was selected as the feedback mechanism for this experiment since

it is used as an aim point in CQC. In order to evaluate the model’s trueness, its end point

on the Cartesian plane was compared to the polygon’s perimeter in Figure 16. Ideally, the

end point of this laser should trace the polygon’s perimeter within the sensor’s level of

accuracy. A scaling factor was required to adjust the length of the laser’s vector as the

weapon system was manipulated. This ensured that the vector’s endpoint laid in the

Cartesian plane in order to verify that it traced the polygon’s perimeter as desired.

The scaling factor helped to obtain the grid coordinates that corresponded to the

laser’s projection onto the two-dimensional Cartesian plane. Even though this is not

required for an actual CQC operation, determining these grid coordinates was needed to

map the end of the laser’s beam that physically traced the perimeter from Figure 16. The

length of the laser’s vector started at the weapon system’s range to the plane with the

weapon system in its reference orientation. If the vector’s length remained constant, its

end point would not have laid in the plane while the weapon system was manipulated.

Unless the weapon system was in its reference orientation, the vector’s length was too

short. As such, its length was extended proportionally to the weapon system’s angle from

its reference orientation. As shown in Figure 22, the length of the vector needed to be

adjusted precisely. Extending its length too little or too much added error when analyzing

the model’s trueness. Their endpoints needed to be projected orthogonally onto the plane.

Since the reference orientation was the only orientation that is orthogonal to the plane,

the remaining projections added error for a vector of errant length.

 48

Figure 22. A scaling factor adjusted the length of the laser’s vector to ensure

that its endpoint remained in the two-dimensional Cartesian plane as the
weapon system was manipulated. After [12]–[15].

Other means for determining the laser’s grid coordinates were investigated, but

computing this scaling factor was selected since it was the quickest and least

computationally expensive method that was explored. For example, another means for

determining the grid coordinates on the plane is to extend the length of the laser’s vector

to the weapon system’s maximum effective range. A 500-meter length ensures that the

vector always intersected the plane since this experiment was conducted at a range of ten

meters or less. Calculus could have been used to compute the intersecting grid coordinate

between the vector and plane. This method was not selected due to the computational

cost of determining their intersection. The scaling factor l can be computed with the

single equation

 () () ()
() ()

cos cos sin
cos cos

Y P
P Lx z r

l
α α β

α β
+ +

= (4.2)

where r is the weapon system’s range to the plane and the remaining variables were

defined in Chapter II. The scaling factor l adjusted the length of W


‘s x-component by

 49

redefining the vector as ()T,0,0,1W l=


. The one was concatenated to the bottom of W


 in

order to match its dimensions with the transformation operators from Chapter II. After it

was resized, the vector W


 was multiplied with to describe the laser’s endpoint as it

traced the polygon’s perimeter.

2. Trueness of the Kinematic Model

The desired end state of this experiment was that the rifleman’s kinematic model

properly described the weapon system’s motion. The PEQ-15’s visible laser was used to

trace the polygon from Figure 16, and the model was responsible for reproducing the

movement of the laser’s endpoint on the Cartesian plane. The model described this

motion with the data sets that were collected from the sensor and VICON motion system.

Human error was inherent in this experiment since the weapon system was manipulated.

As discussed in Chapter III, the VICON’s ground-truth data helped to evaluate if this

additional error detrimentally affected the model’s description. Since the model described

the laser motion as desired with the VICON’s data set, the model of a rifleman’s

kinematics was verified despite the human error from tracing the perimeter and setting up

the plane. It was still important to evaluate the model’s description of the laser’s motion

with the sensor’s data set. This confirmed that the sensor’s accuracy remained the same

when integrated into the kinematic model. Its estimations were compared to the VICON’s

ground-truth data, and the model’s description of the laser’s motion is shown on the

Cartesian plane in Figure 23. The weapon system started in its reference orientation with

the laser pointing at the plane’s origin. After a distinguishable yaw to synchronize the

collected data sets, the laser traced the polygon’s perimeter starting to the left.

NED
LT

50

Figure 23. The model’s description of the weapon system’s orientation as its
PEQ-15 visible laser traces the polygon’s perimeter.

The sensor’s accuracy was maintained when integrated with the kinematic model.

This experiment was repeated for multiple trials within a 4–7 meter range from the

weapon system to the plane. This range was bounded by available space in the laboratory.

It is important to note that the sensor’s estimates consistently under estimated the

rotations of the weapon system. As shown in Figure 23, the polygon that the sensor

traced remained compressed relative to the VICON’s polygon. Two potential causes were

investigated. First, the scaling factor l may have been computed or implemented

incorrectly. Second, the sensor’s calibration needed to be confirmed. Neither of these

appeared to be the cause of the sensor’s compression. The model accurately described the

laser as is traced the polygon with the VICON’s ground-truth data. Since the scaling

factor was computed and implemented the same way for the sensor’s data, it was

concluded that the scaling factor was not adjusting the vector’s length to be too short or

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

y (cm)

z
(c

m
)

VICON
Sensor

 51

too long. Additionally, the grid coordinates for the laser’s endpoints were computed with

three-dimensions. The x and y components were the endpoint locations on the plane, and

its z component was used to verify that this location was in the plane. Since this z

component remained at zero, it was again concluded that l was working as desired and

the endpoint lied in the plane. The sensor’s calibration and settings were confirmed, and

the experiment was repeated multiple times with multiple sensors. The sensors

consistently under estimated the rotations within the desired level of accuracy.

The VICON’s ground-truth data validated the model’s trueness, but it was

important to see how the sensor’s error would be impacted as the system’s prototype is

incrementally constructed. The sensors’ under estimation of the weapon system’s

rotations should be investigated further in future work. If the YEI 3-Space Data-Logging

sensor is selected as the best IMU for this specific application, a least-squares fit or

polynomial interpolation is recommended to account for this compression. The model’s

description of the weapon system’s orientation must be as accurate as possible to avoid

false positive and negative detections from the geometry-of-fire tracking algorithm.

Despite the compression consideration, the transformation operators that were developed

for this kinematic model were verified. The tracking algorithm could now be tested with

the sensor’s accuracy validated and the kinematic model verified.

C. TESTING OF THE TRACKING ALGORITHM

1. Simulation of Moving Friendly Nodes

Testing the tracking algorithm did not present a major challenge that adjusted its

experimental design. After integrating the tracking algorithm into the network, the

designed experiment evaluated the algorithm as desired for the four scenarios; however,

the major lesson learned from this experiment was that the VICON motion system could

have been incorporated to provide positional data. The original experimental design did

not call for the VICON motion system since it had been used to provide ground truth

orientation data up to this point. Since the experiments built off each other, the sensor’s

accuracy was confirmed and the model’s trueness was verified, it did not seem necessary

to incorporate the VICON motion system to track orientations anymore. It could have

 52

been used to track the positions of the friendly nodes for the network. These positions

could have been manipulated in real time instead of having to simulate their movements

for each scenario. Integrating the VICON motion system would have allowed for more

realistic testing and further analysis of the algorithm and network. The algorithm’s false

positive and negative detections could have been evaluated, and uncertainties and

confidence intervals could have been explored. The realization for incorporating the

VICON motion system happened at the end of this thesis research, and the student who

developed the tactical network graduated from NPS before it could be integrated. As

such, this integration is recommended for future work.

2. Algorithm’s Ability to Detect Geometry Issues

The tracking algorithm was tested for the four scenarios from the experimental

design. The algorithm properly identified conflicted geometries as desired. Since a

human study is required to determine the best feedback mechanism, the rifleman was

alerted of geometries issues with a message displayed on a computer screen. An example

of this output is shown in Figure 24. The message simply warned the rifleman to cease

fire and informed them of the angle to a friendly node.

Figure 24. An example of the friendly detection script’s output that alerts a

rifleman of a present geometry issue.

The major questions that stirred from these scenarios were: should the algorithm’s

loop be time or event-based, how fast does the algorithm need to update, and how are

false positives and negatives analyzed? Since operations are event based, it was decided

 53

that the algorithm should also be event-based. The algorithm should compute geometries

as the weapon system’s orientations and friendly nodes’ positions change. This allowed

the algorithm to update as need, but the problem was ensuring that it updated fast enough.

A black-box analysis was conducted to determine this rate. The three feedback

mechanisms that were discussed could be a light flashing in the ACOG, a tone beeping in

an earpiece, or a vibration in the weapon system’s butt stock. Since light flashing in the

optic is the quickest, it was used to evaluate if the event-based algorithm operated fast

enough. The eye is able to perceive a blinking light at up to 20 Hz [20]. As such, this rate

was used for the black-box analysis. The number of nodes was increased from a fire team

level to a squad level in order to evaluate how quickly the algorithm could compute and

identify conflicted geometries. Even with the simulated movement of 13 friendly nodes,

the algorithm was still able to update positions and orientations and to detect geometry

issues at the desired 20 Hz rate. The scenarios that involved moving nodes brought up the

discussion about false positives and negatives. As discussed, integrating the VICON

motion system to provide positional data should allow for this additional analysis.

D. SUMMARY

All three of the experiments presented major challenges that adjusted the original

test plans. The data sets that were collected to validate the sensor’s accuracy needed to be

synchronized. A scaling factor was needed to adjust the length of the laser’s orientation

vector in order to verify that the kinematic model properly described the weapon

system’s motion. Additionally, simulating the moving positions for friendly nodes was

required to test the tracking algorithm. All three of the experiments also had

considerations with their results. For dynamic conditions, the sensor’s accuracy only met

its product specifications when the weapon system’s orientation was momentarily fixed

or slowed its rate of change. The sensor’s estimations compressed the model’s

description of the weapon system’s manipulations. Furthermore, the tracking algorithm

highlighted the false negative and false positive issue that needs to be addressed with the

uncertainties from the position and orientation data. Ultimately, these considerations

directly apply to recommendations for future work. These recommendations and the

original contribution of this research are discussed in the final chapter.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

V. CONCLUSION AND RECOMMENDATIONS

A. SUMMARY OF CONTRIBUTIONS

The goal of this research was to develop a system that streamlines the geometry-

of-fire validation cycle for direct-fire weapon systems. This technology will provide

dismounted infantry units with a tactical advantage by enhancing their situational

awareness and increasing their tempo. As discussed in Chapter I, this system was

designed as a tactical network consisting of five subsystems. These subsystems

correspond to the following components: transmitters/receivers that communicate with

the network, sensors that track riflemen’s positions, sensors that track weapon systems’

orientations, algorithms and software that compute geometries between friendly nodes,

and feedback mechanisms that inform riflemen of conflicted geometries. Two of these

subsystems were developed, with the focus on tracking a weapon system’s orientation

and computing the offsets between friendly nodes in the network. The desired end state

was to validate these subsystems’ designs in order to integrate them into a prototype of

the tactical network.

A kinematic model of a rifleman and geometry-of-fire tracking algorithm were

developed for these subsystems. The kinematic model uses an orientation estimation

sensor to describe the motion of a manipulated weapon system, and the tracking

algorithm identifies conflicted geometry of fires when integrated with a tactical network.

As detailed in Chapter IV, both of these subsystems were tested and verified. Their

current designs are not ready to be integrated into the system’s final design, but they

serve as proofs-of-concept and provide viable foundations for future refinement. The

design requirements for this thesis were simplified since this was the first attempt to

develop these subsystems. Future iterations need to address these simplifications. The

rifleman’s kinematic model must be expanded to describe an actual human body, and a

survey of technology is recommended to identify the best IMU for this specific

application. Once a PNS is designed, the tracking algorithm also needs further evaluation.

It was only tested for the four scenarios that were detailed in Chapter III, and the

movements of node positions were simulated during the testing of these scenarios. With a

 56

PNS to track riflemen’s positions, the algorithm’s false positives and negatives for

detection can be analyzed and uncertainties and confidence intervals can be computed.

The major contribution of this thesis is the exploration of a novel idea. A tactical

network has never been designed for this specific application. The idea to provide

dismounted infantry units with this technological advantage came from the students and

faculty of the Department of Electrical and Computer Engineering at NPS. Merging the

students’ military experience with the faculties’ academic knowledge was instrumental in

the design of the overall system and development of these subsystems. The results from

this thesis demonstrate that a weapon system’s orientation can be tracked and the offsets

between friendly nodes can be computed. As the kinematic model and tracking algorithm

are refined in future work, these subsystems can be extended to other direct-fire weapon

systems, and the design of the overall system can be expanded to other types of

operations and environments. This system will ideally replace the antiquated 300 Mil

Rule. If all other things are equal, this technology could provide riflemen with the edge

that is needed to tip the scales of war in their favor.

B. FUTURE WORK

(1) Survey of Technology

A survey of technology was not completed before selecting the YEI 3-Space

Data-Logging sensor for this system’s design. This survey is recommended in order to

determine the best IMU for this specific application. As discussed, the YEI 3-Space Data-

Logging sensor was selected since it is readily available and boasts the desired level of

accuracy for orientation estimation. This level of accuracy was verified for static

orientations but diminished as the weapon system’s orientation changed quickly under

dynamic conditions. Riflemen must be able to move quickly. The main cause for this

drop in accuracy is due to lag from the sensor’s filter method. This sensor is marketed for

a wide-range of applications. Another IMU may be designed, or at least better suited, for

this specific application.

 57

(2) Filtering of the Sensor’s Raw Measurements

Filtering of the sensor’s raw measurements should also be investigated in order to

identify the best filter design for this specific application. The YEI 3-Space Data-Logging

sensor used Kalman filtering techniques to process its measurements. As discussed, this

sensor was designed for a wide-range of applications, and the lag between the IMU’s

measurements and its filter’s estimates limited its accuracy for dynamic conditions. Other

filtering techniques can potentially reduce this lag and help maintain the sensor’s level of

accuracy for this specific application [3]. This recommendation for future work should be

completed after the survey of technology as the filter’s design depends on the IMU that is

selected.

(3) Refinement of the Rifleman’s Kinematic Model

The model of the rifleman’s kinematics was simplified for this thesis. A rifleman

carrying a direct-fire weapon system was represented by an M4 carbine mounted to a

tripod. The tripod reduced the number of degrees of freedom and allowed the M4 carbine

to be held in fixed positions and orientations. Even though this helped verify the model

and analyze the sensor’s accuracy, the rifleman’s kinematic model needs to be refined for

an actual human body. This is imperative for tracking a weapon system’s rotations and

translations as it is manipulated during an actual CQC operation. Open-source kinematic

models of the human body have been developed for other applications. These must be

investigated in order to determine the attributes of the human body that should be taken

into account for this specific application.

(4) Integration of the PNS, Tactical Network, and Feedback Mechanism

Prototypes of the system’s remaining components must be designed, validated,

and integrated. Two of the system’s five functions were addressed in this thesis: tracking

the weapon system’s orientation and computing the geometry of fires at each friendly

node. As discussed in Chapter II, concurrent thesis research at NPS is the design of a

tactical network, but the PNS and feedback mechanisms still need to be explored.

Designing the PNS is arguably the most challenging. Its level of accuracy must be as high

as possible, and it must be maintained for the duration of a CQC operation. Designing the

 58

feedback mechanism requires human subject research. This mechanism could be a light

flashing in the ACOG, a tone beeping in an earpiece, or a vibration in the weapon

system’s butt stock. A large population of experienced riflemen should evaluate these

mechanisms in order to determine which works best for this specific application. All of

these components need to be integrated into a single prototype of the complete system

once they have been individually designed and validated.

 59

APPENDIX

A. SETTINGS FOR THE YEI 3-SPACE DATA-LOGGING SENSOR

The default manufacturer settings for the YEI 3-Space Data-Logging sensor were

adjusted for this thesis’ specific application. Its default coordinate system was changed

from a left-handed system to a right-handed system. In order to align its coordinate

directions with the NED reference frame, the sensor’s x-axis pointed out of its front, y-

axis pointed out of its right-side, and z-axis pointed straight down. This configuration is

depicted in Figure 25.

Figure 25. The default coordinate system was adjusted to align its coordinate

directions with the NED reference frame as depicted. From [21].

Additionally, the sensor’s default advanced settings were adjusted. Its filter mode

was changed from Kalman to Q-Comp. The Q-Comp filter mode stands for quaternion

60

complementary. According to the sensor’s user manual, this filter is a faster method for

estimating orientation with an accuracy that is comparable to its Kalman filter mode [21].

The sensor’s running average was set to 15.000 in order to balance the smoothness of its

estimates with the lag from its filter method. The sensor’s reference mode was set to

Single Auto Continual in order to mitigate the effects of shifts in magnetic force and

instabilities of the sensor’s accelerometer [21]. The changes to these settings are shown in

Figure 26.

Figure 26. The sensor’s filter mode, running average, and reference mode were
adjusted as shown. After [21].

61

B. MATLAB SCRIPTS FOR VERIFYING THE KINEMATIC MODEL

MATLAB programming language and computing environment was used to verify

the model of a rifleman’s kinematics. Two functions and a script file were written to

conduct batch mode processing of the data sets that were collected from the sensor and

VICON motion system. The first function was called by the script file to compute the

sensor’s error, and the second function was called by the script file to synchronize the

data sets for plotting purposes. The script file served as a main program. It called the two

functions and implemented the kinematic model.

1. Function for Analyzing the Sensor’s Accuracy

function [Error,pA,pM,kAStart,kAStop,kMStart,kMStop] =
sensorerror(pActual,pMeasured,laserActual,laserMeasured)

 %%
 % Compute and display the distance and angular error between the
 % actual and measured grid coordinates. The displayed error
 % represents the error in the sensor’s readings in comparison to
 % the ground-truth data collected from the VICON system.
 % INPUTS:
 % pActual -- Ground truth grid coordinates from the VICON system
 % pMeasured -- Measured grid coordinates from the sensor’s
 % readings
 % laserActual -- Laser position in the grid’s coordinate system
 % from the VICON system (needed for the angular
 % error)
 % laserMeasured -- Laser position in the grid’s coordinate system
 % from the sensor (needed for the angular error)
 % (assume that the number of laser positions equals the number of
 % grid coordinates from their respective systems)
 % OUTPUTS:
 % Displays the mean, minimum and maximum distance and angular
 % errors
 % Error -- Distance error in the first row and angular error in
 % the second row
 % pA -- Truncated set of actual grid coordinates from the VICON
 % system
 % pM -- Truncated set of measured grid coordinates from the
 % sensor
 % kAStart -- Synchronization index to start the VICON data set
 % kAStop -- Synchronization index to stop the VICON data set
 % kMStart -- Synchronization index to start the sensor’s data set
 % kMStop -- Synchronization index to stop the sensor’s data set

 %%
 % The VICON system and sensor collect data at different sampling

 62

 % rates. In order to compare the sensor’s readings to the correct
 % VICON grid coordinates, we must ensure that all matrices
 % (pActual, laserActual, pMeasured and laserMeasured) are the same
 % size. These matrices should have the same number of rows (ie.
 % two for the grid coordinates and three for the laser positions)
 % but varying number of columns (ie. difference between the VICON
 % system’s and sensor’s sampling rates).

 %%
 % Determine when the sensor starts recording motion in the rifle.
 % This will allow us to ignore the initial readings from the sensor
 % when the rifle is still at its reference position

 % Determine the maximum distance from the origin in the first half
 % of the data
 dist=[];
 for i=1:floor(length(pMeasured(1,:))/2)
 dist=[dist sqrt(pMeasured(:,i)’*pMeasured(:,i))];
 end
 k=find(dist==max(abs(dist)));
 k=k(1);
 kMStart=k;

 % Remove the initial sensor readings while the rifle is still in
 % the reference position
 pMeasured=pMeasured(:,k:end);
 laserMeasured=laserMeasured(:,k:end);

 % Repeat the same steps to determine when the VICON system starts
 % recording motion in the rifle.

 % Determine the maximum distance from the origin in the first half
 % of the data
 dist=[];
 for i=1:floor(length(pActual(1,:))/2)
 dist=[dist sqrt(pActual(:,i)’*pActual(:,i))];
 end
 k=find(dist==max(abs(dist)));
 k=k(1);
 kAStart=k;

 % Remove the initial VICON readings while the rifle is still in the
 % reference position
 pActual=pActual(:,k:end);
 laserActual=laserActual(:,k:end);

 %%
 % Determine when the sensor stops recording motion in the rifle.
 % This will allow us to ignore the final readings from the sensor
 % when the rifle returns to its reference position

 % Determine the maximum distance from the origin in the second half

 63

 % of the data
 dist=[];
 for i=round(length(pMeasured(1,:))/2):length(pMeasured(1,:))
 dist=[dist sqrt(pMeasured(:,i)’*pMeasured(:,i))];
 end
 k=find(dist==max(abs(dist)));
 k=floor(length(pMeasured(1,:))/2)+k(end);
 kMStop=k;

 % Remove the final sensor readings when the rifle returns to the
 % reference position
 pMeasured=pMeasured(:,1:k);
 laserMeasured=laserMeasured(:,1:k);

 % Repeat the same steps to determine when the VICON system stops
 % recording motion in the rifle.

 % Determine the maximum distance from the origin in the second half
 % of the data
 dist=[];
 for i=round(length(pActual(1,:))/2):length(pActual(1,:))
 dist=[dist sqrt(pActual(:,i)’*pActual(:,i))];
 end
 k=find(dist==max(abs(dist)));
 k=floor(length(pActual(1,:))/2)+k(end);
 kAStop=k;

 % Remove the initial VICON readings while the rifle is still in the
 % reference position
 pActual=pActual(:,1:k);
 laserActual=laserActual(:,1:k);

 %%
 % Determine which matrix contains more grid coordinates
 % (‘a’ stands for actual and ‘m’ stands for measured)
 % (the number of laser positions should equals the number of grid
 % coordinates from their respective systems)
 dimA=size(pActual);
 dimM=size(pMeasured);

 % Construct the digital frequency vectors for each data set
 kA=1:dimA(2);
 kM=1:dimM(2);
 wA=2*pi*kA/dimA(2);
 wM=2*pi*kM/dimM(2);

 %%
 % Compute and display the mean, minimum and maximum distance errors
 % between the actual and measured grid coordinates

 % Compute the difference between the actual and measured grid
 % coordinates

 64

 dist=[];
 pA=[];
 pM=[];
 laserA=[];
 laserM=[];
 for w=0.01:0.01:2*pi

 % Determine the integer index that corresponds to the current
 % digital frequency w
 kAIndex=round(w*dimA(2)/(2*pi));
 kMIndex=round(w*dimM(2)/(2*pi));

 % Append the computed distance between the two sets of data
 dist=[dist pActual(:,kAIndex)-pMeasured(:,kMIndex)];

 % Append the indexed data sets that are being compared for the
 % angular error calculations
 pA=[pA pActual(:,kAIndex)];
 pM=[pM pMeasured(:,kMIndex)];
 laserA=[laserA laserActual(:,kAIndex)];
 laserM=[laserM laserMeasured(:,kMIndex)];
 end

 % Loop through the number of grid coordinates
 dim=size(dist);
 distError=[];
 for k=1:dim(2)

 % Compute the distance error for each grid coordinate from the
 % calculated difference
 distError=[distError sqrt(dist(:,k)’*dist(:,k))];

 end

 % Display the mean, minimum and maximum distance errors
 disp(‘The distance errors are (in centimeters): ‘)
 distError_Mean=mean(distError)
 distError_Mode=mode(distError)
 distError_Median=median(distError)
 distError_Min=min(distError)
 distError_Max=max(distError)

 %%
 % Compute and display the mean, minimum and maximum angular errors
 % between the actual and measured grid coordinates

 % Create a row of zeros to append to the grid coordinate matrices
 zero=[1:dim(2)];
 zero=zero*0;

 % Append this row of zeros to the top of the grid coordinate
 % matrices to serve as the x-component of these vectors (remember

 65

 % that these grid coordinates are in the grid’s (y,z) plane)
 pA=[zero; pA];
 pM=[zero; pM];

 % Compute the position vectors that represent the laser’s beam.
 % This vector will be in the grid’s system from the laser’s
 % position to the grid coordinates in the (y,z) plane.
 pA_LG=pA-laserA;
 pM_LG=pM-laserM;

 % Loop through the number of position vectors
 angleError=[];
 for k=1:dim(2)

 % Compute the angular error for each grid coordinate
 angleError=[angleError atan2(norm(cross(pA_LG(:,k),pM_LG(:,k))),...
 dot(pA_LG(:,k),pM_LG(:,k)))];

 end

 % Display the mean, minimum and maximum angular errors
 disp(‘The angular errors are (in degrees): ‘)
 angleError_Mean=mean(angleError)*180/pi
 angleError_Mode=mode(angleError)*180/pi
 angleError_Median=median(angleError)*180/pi
 angleError_Min=min(angleError)*180/pi
 angleError_Max=max(angleError)*180/pi

 % Create the Error variable for the output
 Error=[distError;
 angleError*180/pi];

end

2. Function for Synchronizing the Collected Data Sets

function [AVSampled,ASSampled,wVSampled,wSSampled] =
samplerate(AV,AS,kAStart,kAStop,kMStart,kMStop)

 %%
 % The VICON system and sensor collect data at different sampling
 % rates. In order to compare the sensor’s readings to the correct
 % VICON grid coordinates, we must ensure that all vectors of angles
 % (Az, Ay & Ax) are the same size. These matrices should have the
 % one row but varying number of columns (ie. difference between
 % the VICON system’s and sensor’s sampling rates).
 % INPUTS:
 % AV -- VICON angular readings in radians
 % AS -- Sensor angular readings in radians
 % OUTPUTS:
 % AVSampled -- Truncated VICON angular readings in radians

 66

 % ASSampled -- Truncated sensor angular readings in radians
 % wVSampled -- Digital frequency for the VICON readings
 % wSSampled -- Digital frequency for the sensor readings
 % kAStart -- Synchronization index to start the VICON data set
 % kAStop -- Synchronization index to stop the VICON data set
 % kMStart -- Synchronization index to start the sensor’s data set
 % kMStop -- Synchronization index to stop the sensor’s data set

 %%
 % Truncate the data sets with the synchronization indices
 AS=AS(kMStart:end);
 AS=AS(1:kMStop);
 AV=AV(kAStart:end);
 AV=AV(1:kAStop);

 %%
 % Determine which vector contains more angles
 dimA=length(AV); % Actual dimension from the VICON system
 dimM=length(AS); % Measured dimension from the sensor

 % Construct the digital frequency vectors for each data set
 kA=1:dimA;
 kM=1:dimM;
 wA=2*pi*kA/dimA;
 wM=2*pi*kM/dimM;

 % Define the output variables
 AVSampled=AV;
 ASSampled=AS;
 wVSampled=wA;
 wSSampled=wM;

end

3. Main Script File for Implementing the Kinematic Model

%%%
%%%%%%%%%%%%%%%%%%% THESIS Sensor & VICON Integration %%%%%%%%%%%%%%%%%
%%%

%%%
% Clear variables
clear all
clc

%%%
%%%
% Model the coordinate systems in relation to a reference frame
%%%
% List of the coordinate systems
% {O}: NED

 67

% {T}: Tripod
% {R}: Rifle
% {L}: Laser
% {G}: Grid
% {S}: Sensor
% {V}: VICON
% {A}: Actual NED

%%%
% Define the constant variables that describe the distances between the
% different coordinate system origins
h_TO=102; % Distance between the NED’s and tripod’s origins in centimeters
 % along the negative z-axis of the NED’s system
 % (height of the tripod’s origin from the floor)
h_LR=17; % Distance between the rifle’s and laser’s origins in centimeters
 % along the negative z-axis of the rifle’s system
 % (height of the laser’s origin from the rifle)
h_SL=4; % Distance between the laser’s and sensor’s origins in centimeters
 % along the positive z-axis of the laser’s system
 % (height of the sensor’s origin from the laser)
h_RT=7; % Distance between the tripod’s and rifle’s origins in centimeters
 % along the negative z-axis of the tripod’s system
 % (height of the rifle’s origin from the tripod)
h_GO=h_TO+h_RT+h_LR; % Distance between the NED’s and grids’s origins in
 % centimeters along the negative z-axis of the NED’s system
 % (height of the grid’s origin from the floor)
d_GO=560; % Distance between the NED’s and grid’s origins in centimeters
 % along the negative x-axis of the NED’s system
 % (distance from the grid’s origin to the NED)
 % d_GO=700 cm for the far position
 % d_GO=420 cm for the near position
 % d_GO=560 cm for the networked position
d_RT=2.5; % Distance between the tripod’s and rifle’s origins in centimeters
 % along the negative x-axis of the tripod’s system
 % (offset of the rifle’s origin from the tripods)
d_SL=42; % Distance between the laser’s and sensor’s origins in centimeters
 % along the negative x-axis of the laser’s system
 % (offset of the sensor’s origin from the laser)

%%%
% Define the transformation matrices between the coordinate systems
% that are fixed to each other with the reference angles
% Az: rotation about the z-axis (yaw)(alpha)
% Ay: rotation about the y-axis (pitch)(beta)
% Ax: rotation about the x-axis (roll)(gamma)
% Angles must be in radians and set to zero for the initial reference
% position (rifle level and perpendicular to the grid while facing it)
Az=0*pi/180;
Ay=0*pi/180;
Ax=0*pi/180;

% Remember: O_BA is the {B}’s origin position relative to {A}
T_GO=[1 0 0 -d_GO; % Describe {G} relative to {O}

 68

 0 -1 0 0;
 0 0 -1 -h_GO;
 0 0 0 1];

T_TO=[-cos(Az) sin(Az) 0 0; % Describe {T} relative to {O}
 -sin(Az) -cos(Az) 0 0;
 0 0 1 -h_TO;
 0 0 0 1];

T_RT=[cos(Ay) 0 sin(Ay) -d_RT; % Describe {R} relative to {T}
 0 1 0 0;
 -sin(Ay) 0 cos(Ay) -h_RT;
 0 0 0 1];

T_LR=[1 0 0 0; % Describe {L} relative to {R}
 0 1 0 0;
 0 0 1 -h_LR;
 0 0 0 1];

T_SL=[1 0 0 -d_SL; % Describe {S} relative to {L}
 0 1 0 0;
 0 0 1 h_SL;
 0 0 0 1];

%%%
% Define the compound transformations between the coordinate systems
% that are not directly fixed to each other.
T_LG=inv(T_GO)*T_TO*T_RT*T_LR; % Describe {L} relative to {G}

%%%
% Define the position vector in the laser’s coordinate system that ends
% at the grid’s origin when all of the systems are in their initial ref
% positions (ie. rifle must be level and perpendicular to the grid
% while facing it).

% Determine the scaling constant for the vector to end in the grid’s
% (y,z) plane
c=(d_RT*cos(Az)+h_LR*cos(Az)*sin(Ay)+d_GO)/(cos(Ay)*cos(Az));

% Scale the x-component of the laser’s position vector since it is
% aligned with the system’s x-axis
pr_L=[c;
 0;
 0;
 1];

% Describe this position vector in the grid’s coordinate system after
% it has been scaled. Ensure that the x-component of the grid’s pos
% vector is zero.
pr_G=T_LG*pr_L;

%%%

 69

% Determine the scaling factor the rotations about the y-axis
diff=[1.36 1.56 1.83; % actual reading divided by measured reading
 250 420 700]; % distance from {G} to {O} in centimeters

% Determine the fitted polynomial for these differences
P=polyfit(diff(2,:),diff(1,:),2);

% Compute the scaling factor y for the distance from {G} to {O}
y=P(1)*d_GO^2+P(2)*d_GO+P(3);

%%%
%%%
% Determine the measured grid coordinates that track the rifle’s
% orientation with the sensor’s readings
%%%
% We must relate the actual NED system to our initial reference
% position!
% 1. In order to relate our drawn systems to the actual NED system, we
% can take an initial sensor reading with the rifle level and
% perpendicular to the grid while facing it (ie. sensor aligned with
% our drawn system in the reference position). This will provide us
% with the offset between the drawn and actual systems.

% Import the sensor data (include the .txt extension with the file
% name)
Q_SiA=dataReader(‘dataSensorBoxNetworkRef.txt’);

% Average these quaternions
q_SiA=quatavg(Q_SiA);

% Convert these quaternions into rotation matrix that describe the
% offset to the actual systems in the initial reference position
R_SiA=quat2dcm(q_SiA); % Describe {S} relative to {A}

%%%
% Import the quaternions from the sensor’s readings at various angles
% of rotation
% Include the .txt extension with the file name
Q_SkA=dataReader(‘dataSensorBoxNetwork.txt’);

% Convert these quaternions into rotation matrices
R_SkA=quat2dcm(Q_SkA);

%%%
% Determine the measured angles of rotation from the sensor’s initial
% rotation matrix R_SiA in the reference position

% Loop through the number of quaternions
dim=size(R_SkA);
p_G=[];
laserMeasured=[];
Azs=[];

 70

Ays=[];
Axs=[];
for k=1:dim(3)

 % Describe the angles of rotation from sensor reading k relative to
 % the initial sensor reading i
 R_SkSi=inv(R_SiA)*R_SkA(:,:,k); % Describes {Sk} relative to {Si}

 % Determine the measured angles of rotation from this matrix
 % Azm: rotation about the z-axis (yaw)(alpha)
 % Aym: rotation about the y-axis (pitch)(beta)
 % Axm: rotation about the x-axis (roll)(gamma)
 % Angles must be in radians (‘m’ stands for measured)
 [Azm Aym Axm]=dcm2angle(R_SkSi);

 % Rescale the rotations about the y-axis with the computed scaling
 % factor y
 % Aym=abs(y)*Aym;

 %%
 % Redefine the transformation matrices with the measured angles of
 % rotation from the sensor’s readings. These rotations are about
 % fixed axis and should be pre-multiplied by their respective
 % coordinate systems
 % (ie. rotations about the z-axis should be pre-multiplied with the
 % tripod’s system and rotations about the y-axis should be pre-mult
 % with the rifle’s system).

 % Define the special homogeneous transformations for the rotations
 % about a fixed axis
 Tz=[cos(Azm) -sin(Azm) 0 0;
 sin(Azm) cos(Azm) 0 0;
 0 0 1 0;
 0 0 0 1];
 Ty=[cos(Aym) 0 sin(Aym) 0;
 0 1 0 0;
 -sin(Aym) 0 cos(Aym) 0;
 0 0 0 1];
 Tx=[1 0 0 0;
 0 cos(Axm) -sin(Axm) 0;
 0 sin(Axm) cos(Axm) 0;
 0 0 0 1];

 % Redefine the description of {L} relative to {G} by pre-multiply
 % rotations by their respective coordinate systems. This allows us
 % to determine the resulting position vectors from these rotations
 % (‘m’ stands for measured)
 T_LGm=inv(T_GO)*T_TO*Tz*T_RT*Ty*Tx*T_LR;

 % Retrieve the Euler angles from R_LGm in order to plot and
 % compare to the VICON system angles
 R_LGm=T_LGm(1:3,1:3)*[cos(pi) 0 sin(pi); 0 1 0;-sin(pi) 0 cos(pi)];

 71

 [Azr Ayr Axr]=dcm2angle(R_LGm);
 Azs=[Azs Azr];
 Ays=[Ays Ayr];
 Axs=[Axs Axr];

 % Collect the laser positions in the grid’s coordinate system in
 % order to calculate the angular error between the sensor’s
 % readings and the VICON system
 laserMeasured=[laserMeasured T_LGm(1:3,4)];

 %%
 % Compute the resulting position vectors from these rotations in
 % the grid’s coordinate system. These vectors should end in the
 % grid’s (y,z) plane
 % (ie. the x-component of these vectors should be equal to zero).

 % Determine the scaling constant for the vector to end in the
 % grid’s (y,z) plane
 c=(d_RT*cos(Azm)+h_LR*cos(Azm)*sin(Aym)+d_GO)/(cos(Aym)*cos(Azm));

 % Scale the x-component of the laser’s position vector since it is
 % aligned with the system’s x-axis
 p_L=[c;
 0;
 0;
 1];

 % Describe this position vector in the grid’s coordinate system
 % after it has been scaled. Ensure that the x-component of the
 % grid’s position vector is zero.
 p_G=[p_G T_LGm*p_L];

end

%%
% Rotate the subsequent position vectors p_G into the standard
% Cartesian plane with positive Z up and positive Y left
% (All of the position vectors must be flipped across the horizontal
% axis)

% Define the rotation matrix for a 180 degree rotation about the y-axis
RTG=[cos(pi) 0 sin(pi);
 0 1 0;
 -sin(pi) 0 cos(pi)];

% Initialize the vector to compile the transformed position vectors
p_GRotated=[];

% Loop through the number of rotations
dim=size(p_G);
for k=1:dim(2)

 72

 % Append the transformed position vectors
 % (The y and z elements from this vector correspond to the measured
 % grid coordinates)
 p_GRotated=[p_GRotated RTG*p_G(1:3,k)];

end

%%%
%%%
% Determine the actual grid coordinates that track the rifle’s
% orientation with the VICON system
%%%
%%%
% Load the rifle’s motion data from the VICON system
% This ‘.mat’ file includes the following columns in this order:
% 1. Time stamp from the computer’s clock
% 2. X position (in mm)
% 3. Y position (in mm)
% 4. Z position (in mm)
% 5. Angle of rotation about X (in radians)
% 6. Angle of rotation about Y (in radians)
% 7. Angle of rotation about Z (in radians)
% The positions are relative to the platform’s reference frame. This
% frame is a right-hand coordinate system with its origin at the near-
% side corner of the platform along the walkway. Its axis directions
% are:
% X -- Along the platform’s top horizontal edge heading towards the
% door
% Y -- Along the platform’s top horizontal edge heading towards the
% netted wall
% Z -- Up from the platform’s top nearest corner along the walkway
load(‘dataViconBoxNetwork.mat’)

% Define the Euler angles in order to convert them into quaternions
% Az: rotation about the z-axis (yaw)(alpha)
% Ay: rotation about the y-axis (pitch)(beta)
% Ax: rotation about the x-axis (roll)(gamma)
% Angles must be in radians (‘a’ stands for actual)
Aza=Exper_Data2Save(:,7);
Aya=Exper_Data2Save(:,6);
Axa=Exper_Data2Save(:,5);

%%%
% Determine the position vectors in the grid’s coordinate system that
% describe the rifle’s orientations. These vectors should end in the
% grid’s (y,z) plane (ie. x-component should be zero).

% Loop through the number of rotation angles
% (number of angles should be the same for rotations about Z, Y & X)
p_Ga=[];
laserActual=[];

 73

Azv=[];
Ayv=[];
Axv=[];
for k=1:length(Aza)

 %%
 % Redefine the transformation matrices with the measured angles of
 % rotation from the VICON’s readings. These rotations are about
 % axis and should be pre-multiplied by their respective coordinate
 % fixed systems
 % (ie. rotations about the z-axis should be pre-multiplied with the
 % tripod’s system and rotations about the y-axis should be pre-
 % multiplied with the rifle’s system).

 % Define the special homogeneous transformations for the rotations
 % about a fixed axis
 Tz=[cos(Aza(k)) -sin(Aza(k)) 0 0;
 sin(Aza(k)) cos(Aza(k)) 0 0;
 0 0 1 0;
 0 0 0 1];
 Ty=[cos(Aya(k)) 0 sin(Aya(k)) 0;
 0 1 0 0;
 -sin(Aya(k)) 0 cos(Aya(k)) 0;
 0 0 0 1];
 Tx=[1 0 0 0;
 0 cos(Axa(k)) -sin(Axa(k)) 0;
 0 sin(Axa(k)) cos(Axa(k)) 0;
 0 0 0 1];

 % Redefine the description of {L} relative to {G} by pre-multiply
 % these rotations by their respective coordinate systems. This
 % allows us to determine the resulting position vectors from these
 % rotations (‘a’ stands for actual)
 T_LGa=inv(T_GO)*T_TO*Tz*T_RT*Ty*Tx*T_LR;

 % Retrieve the Euler angles from R_LGa in order to plot and
 % compare to the sensor angles
 R_LGa=T_LGa(1:3,1:3)*[cos(pi) sin(pi) 0;-sin(pi) cos(pi) 0; 0 0 1];
 [Azr Ayr Axr]=dcm2angle(R_LGa);
 Azv=[Azv Azr];
 Ayv=[Ayv Ayr];
 Axv=[Axv Axr];

 % Collect the laser positions in the grid’s coordinate system in
 % order to calculate the angular error between the sensor’s
 % readings and the VICON system
 laserActual=[laserActual T_LGa(1:3,4)];

 %%
 % Compute the resulting position vectors from these rotations in
 % the grid’s coordinate system. These vectors should end in the
 % grid’s (y,z) plane

 74

 % (ie. the x-component of these vectors should be equal to zero).

 % Determine the scaling constant for the vector to end in the
 % grid’s (y,z) plane

c=(d_RT*cos(Aza(k))+h_LR*cos(Aza(k))*sin(Aya(k))+d_GO)/(cos(Aya(k))*cos(Aza(k)
));

 % Scale the x-component of the laser’s position vector since it is
 % aligned with the system’s x-axis
 p_L=[c;
 0;
 0;
 1];

 % Describe this position vector in the grid’s coordinate system
 % after it has been scaled. Ensure that the x-component of the
 % grid’s position vector is zero.
 p_Ga=[p_Ga T_LGa*p_L];

end

%%
% Rotate the subsequent position vectors p_Ga into the standard
% Cartesian plane with positive Z up and positive Y left
% (All of the position vectors must be flipped across the horizontal
% axis)

% Define the rotation matrix for a 180 degree rotation about the y-axis
RTG=[cos(pi) sin(pi) 0;
 -sin(pi) cos(pi) 0;
 0 0 1];

% Initialize the vector to compile the transformed position vectors
p_GaRotated=[];

% Loop through the number of rotations
dim=size(p_Ga);
for k=1:dim(2)

 % Append the transformed position vectors
 % (The y and z elements from this vector correspond to the measured
 % grid coordinates)
 p_GaRotated=[p_GaRotated RTG*p_Ga(1:3,k)];

end

%%%
% Plot the actual and measured grid coordinates that track the rifle’s
% orientation in order to compare the sensor’s readings to the ground
% truth data from the VICON system

 75

% Actual --> VICON Data
% Measured --> Sensor Data
pDesired=[0 -30 -30 30 30 0 0;
 0 0 20 20 -10 -10 0];
pActual=[p_GaRotated(2,:);
 p_GaRotated(3,:)];
pMeasured=[p_GRotated(2,:);
 p_GRotated(3,:)];

figure (1)
plot(pDesired(1,:),pDesired(2,:),’r--’,pActual(1,:),pActual(2,:),’ms’,...
 pMeasured(1,:),pMeasured(2,:),’bo’)
% title(‘Grids (y,z) Plane’)
xlabel(‘y (cm)’)
ylabel(‘z (cm)’)
axis([-50 50 -50 50])
grid on
legend(‘Desired’,’VICON’,’Sensor’)
% hold on % for tracking the sensor readings in comparison to the VICON system

%%%
% % Show how closely the sensor readings track the VICON data in the
% % plots
% figure (1)
% for k=1:10:length(pA(1,:))
% plot(pA(2,k),pA(3,k),’cd’,pM(2,k),pM(3,k),’yv’)
% pause(1)
% end
% hold off

%%%
% Compute and display the distance and angular error between the actual
% and measured grid coordinates
[Error,pA,pM,kAStart,kAStop,kMStart,kMStop]=sensorerror(pActual,pMeasured,lase
rActual,laserMeasured);

%%%
% Plot the truncated grid coordinates from the VICON system and the
% sensor in order to compare when both sets of data are being truncated

figure (2)
plot(pA(2,:),pA(3,:),’ms’,pM(2,:),pM(3,:),’bo’)
% title(‘Grids (y,z) Plane’)
xlabel(‘y (cm)’)
ylabel(‘z (cm)’)
axis([-50 50 -50 50])
grid on
legend(‘VICON’,’Sensor’)

%%%
% Plot the distance errors
figure (3)

 76

plot(Error(1,:),’r’,’LineWidth’,1.5)
% title(‘Distance Error between the Actual and Measured Coordinates’)
xlabel(‘Digital Freq \omega’)
ylabel(‘Distance Error (cm)’)
xlim([1 length(Error(1,:))])
grid on

% Plot the angular errors
figure (4)
plot(Error(2,:),’r’,’LineWidth’,1.5)
% title(‘Angular Error between the Actual and Measured Coordinates’)
xlabel(‘Digital Freq \omega’)
ylabel(‘Angular Error (degree)’)
xlim([1 length(Error(1,:))])
grid on

%%%
% Plot the actual and measured Euler angles in order to compare the
% VICON system’s and sensor’s data in the {L} coordinate system
% Az: rotation about the z-axis (yaw)(alpha)
% Ay: rotation about the y-axis (pitch)(beta)
% Ax: rotation about the x-axis (roll)(gamma)

% Resize the actual and measured angles since the VICON system and
% sensor sample at different rates in order to compare the angles as
% closely as possible
[Azv,Azs,wzv,wzs]=samplerate(Azv,Azs,kAStart,kAStop,kMStart,kMStop);
[Ayv,Ays,wyv,wys]=samplerate(Ayv,Ays,kAStart,kAStop,kMStart,kMStop);
[Axv,Axs,wxv,wxs]=samplerate(Axv,Axs,kAStart,kAStop,kMStart,kMStop);

% Plot the Euler angles
figure (5)
subplot(3,1,1)
plot(wzv,Azv*180/pi,’b’,’LineWidth’,1.5)
hold on
plot(wzs,Azs*180/pi,’r’,’LineWidth’,1.5)
ylabel(‘Yaw \alpha’)
xlim([0 2*pi])
% title(‘Actual and Measured Euler Angles in Degrees’)
legend(‘VICON’,’Sensor’)
hold off
subplot(3,1,2)
plot(wyv,Ayv*180/pi,’b’,’LineWidth’,1.5)
hold on
plot(wys,Ays*180/pi,’r’,’LineWidth’,1.5)
ylabel(‘Pitch \beta’)
xlim([0 2*pi])
hold off
subplot(3,1,3)
plot(wxv,Axv*180/pi,’b’,’LineWidth’,1.5)
hold on
plot(wxs,Axs*180/pi,’r’,’LineWidth’,1.5)
ylabel(‘Roll \gamma’)

 77

xlim([0 2*pi])
xlabel(‘Digital Freq \omega [0,2\pi]’)
hold off

C. PYTHON SCRIPTS FOR TESTING THE TRACKING ALGORITHM

The Python programming language was used to implement the geometry-of-fire

tracking algorithm. This language was selected since it was compatible with the

network’s hardware components. A function was written to publish node positions, and

the main program called this function and implemented the tracking algorithm. It is

important to note that the main program was developed from open-source templates for

Python code. This template was found by ENS Jonathan Driesslein, USN, who developed

the tactical network for this specific application. All modifications to this template are

indicated with comments.

1. Function for Publishing Node Positions

#!/usr/bin/env python
#license removed for brevity

import rospy
from geometry_msgs.msg import Quaternion

def talker():
 pub = rospy.Publisher(‘/NodePositions’, Quaternion, queue_size=10)
 rospy.init_node(‘talker’, anonymous=True)
 rate = rospy.Rate(10) # 10hz
 while not rospy.is_shutdown():
 data.x = 450;
 data.y = 150;
 data.z = -34;
 data.w = 10;
 rospy.loginfo(data)
 pub.publish(data)
 rate.sleep()

if __name__ == ‘__main__’:
 try:
 talker()
 except rospy.ROSInterruptException:
 pass

 78

2. Script File for Implementing Tracking Algorithm

#!/usr/bin/env python

import zmq
from threespace_api import TSDLSensor as ts
import threespace_api
from threespace_api import *
import serial
import time
import math
import string
import colorsys
import rospy
import roslib
import threading
from std_msgs.msg import String
from geometry_msgs.msg import Quaternion
from socket import *
from numpy import * # Added for Our Code
from numpy import linalg # Added for Our Code
#import json_utils
#import nmea

#################### Start Our Code #####################

Define global variables that must be used in the main
script and functions
global posFriendly
posFriendly=matrix([[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]]) #Negate the sign for opposite direction

#################### ROS ##########################
Define functions that will be called by the main script

def PosePub():
 pub = rospy.Publisher(‘RifleData’, String, queue_size = 20) #’RifleData’
will be the name of the node
 rospy.init_node(‘PosePub’, anonymous=True) #I think that ‘PosePub’ will
be what we call it in the program
 rate = rospy.Rate(5) #5hz
 if not rospy.is_shutdown():
 PubOut = “Roll [%.2f] Pitch [%.2f] Yaw [%.2f]” % (roll, pitch,
yaw)
 rospy.loginfo(PubOut)
 pub.publish(PubOut)
 rate.sleep()

 79

rospy.spin()

def callback(data):
 global posFriendly
 #rospy.loginfo(rospy.get_caller_id() + “I heard \n%s,” data)
 posFriendly[:,data.w]=matrix([[data.x],[data.y],[data.z]])
 #print(posFriendly)
 return posFriendly
 #”I heard X: [%.2f]\n Y: [%.2f]\n Z: [%.2f]\n,” (data.x, data.y,
data.z))

def listener():

 # In ROS, nodes are uniquely named. If two nodes with the same
 # node are launched, the previous one is kicked off. The
 # anonymous=True flag means that rospy will choose a unique
 # name for our ‘listener’ node so that multiple listeners can
 # run simultaneously.
 #rospy.init_node(‘listener’, anonymous=True)

 rospy.Subscriber(“NodePositions,” Quaternion, callback)

 # spin() simply keeps python from exiting until this node is stopped
 #rospy.spin()

#Defining the thread that will be listening to ROS Topic

listThread = threading.Thread(target=listener)
listThread.daemon = True

Function: Determine if any of the friendly nodes are
within the safety threshold surrounding the rifle’s
cone of fire

def detectfriendly(riflePose,posRifle,posFriendly):

INPUT:
riflePose -- Rifle’s laser orientation in the NED
coordinate system. Expect a 3x1 matrix
for the (x,y,z) components from the
position vector (in centimeters)
posRifle -- Rifleman’s position in the NED coordinate
system. Expect a 3x1 matrix for the
(x,y,z) compontents (in centimeters)
posFriendly -- Friendlies’ positions in the NED
coordinate system. Expect a 3xn
matrix for the (x,y,z) compontents
where n is the number of friendly
positions that are passed for that
time step (in centimeters)
OUTPUT: Print ‘CEASE FIRE: Geometries of fire must be

 80

de-conflicted’ if a friendly position is within the
safety threshold

 # Loop through the number of friendly positions
 i=0;
 while i<posFriendly.shape[1]:

 # Compute the position vector that describes the
 # friendly’s position with respect to the rifleman
 pFriendly=posFriendly[:,i]-posRifle

 # Skip friendly positions that are within a meter of
 # the rifleman’s position
 normpFriendly=linalg.norm(pFriendly)
 if normpFriendly>100:
 print(normpFriendly)
 # Compute the angle between the friendly’s position
 # vector and the rifle’s pose (in radians)
 dotProd=dot(transpose(pFriendly),riflePose)
 crossProd=cross(pFriendly,riflePose,axis=0)
 normCross=linalg.norm(crossProd)
 angle=arctan2(normCross,dotProd)

 # Convert the angle from radians to degrees
 angle=angle*180/math.pi

 # Compare the angle to the safety threshold
 # Note: the safety threshold is approximately 8.5
 # degrees around the muzzle of the rifle which
 # corresponds to 300 mils
 if abs(angle)<=16.9:

 # Print the geometries of fire warning
 # and break out of the loop

print(“**
*************”)

 print(“CEASE FIRE: Geometries of fire must be
 de-conflicted!”)
 print(“Angle: [%.2f]” % angle)

print(“***
********”)

 break

 # Increment the index
 i+=1

###################### End Our Code #####################

#BROADCASTPORT=50001 #the port for NMEA PASHR data

 81

counter = 0

#port = “COM3” #for windows
port = “/dev/ttyACM0” #for Raspberry Pi

try:
 print(“Opening with ThreesSpace API”)
 device = threespace_api.TSDLSensor(com_port=port) #this works. Yippee
 print(device)
 print(“Yippee. Found device # {0}.”format(device))
except:
 ## If a connection to the COM port fails, None is returned.
 print(“Boo. No device on {0}.”format(port))
 #print(device)
 #exit()
else:
 if device is not None:
 #configure the UDP socket for broadcast
 #cs = socket(AF_INET, SOCK_DGRAM)
 #cs.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
 #cs.setsockopt(SOL_SOCKET, SO_BROADCAST, 1)

 #configure the ZeroMQ so we can send data to the website
 #context = zmq.Context()
 #pub = context.socket(zmq.PUB)
 #pub.setsockopt(zmq.HWM, 1)
 #pub.connect(“epgm://127.0.0.1:5000”)

#################### Start Our Code #####################

List of the coordinate systems
{O}: NED
{T}: Tripod (rotations about z)
{R}: Rifle (rotations about y and x)
{L}: Laser
{S}: Sensor
{A}: Actual

Define the constant variables for the system model

 # Define the rifleman’s position (in centimeters) in
 # the {O} coordinate system that is being passed to
 # the network. Note: the {T} coordinate system
 # represents the rifleman in this script.
 O_TO=matrix([[0], [0], [0]]) # Rifleman’s position {T} relative to {O}

 # Define the friendlies’ positions (in centimeters) in
 # the {O} coordinate system that are being passed from
 # the network
 #posFriendly=matrix([[0, 0, 100],

 82

 # [0, 100, 0],
 # [-100, 0, 0]]) #Negate the sign for opposite
direction

 # Define the offsets (in centimeters) between the coordinate systems
 h_TO=92 # Hieght of the {T} origin from the {O} origin
 h_RT=7 # Hieght of the {R} origin from the {T} origin
 h_LR=17 # Hieght of the {L} origin from the {R} origin
 h_SL=4 # Hieght of the {S} origin from the {L} origin
 d_RT=2.5 # Distance of the {R} origin from the {T} origin
 d_SL=42 # Distance of the {S} origin from the {L} origin

 # Specify the Euler angles (in radians) for the reference
 # position. Note: the reference position has the rifle
 # level and oriented in the opposite direction of the
 # drawn {O} x-direction
 Az=180*math.pi/180 # rotation about z-axis (yaw)(alpha)
 Ay=0*math.pi/180 # rotation about y-axis (pitch)(beta)
 Ax=0*math.pi/180 # rotation about x-axis (roll)(gamma)

 # Define the transformation matrices between the coordinate
 # systems that are fixed for the reference position
 T_TO=matrix([[-cos(Az), sin(Az), 0, O_TO.item(0)],
 [-sin(Az),-cos(Az),0,O_TO.item(1)],
 [0, 0, 1, O_TO.item(2)-h_TO],
 [0, 0, 0, 1]]) #
Description of {T} relative to {O}

 T_RT=matrix([[cos(Ay), 0, sin(Ay), -d_RT],
 [0, 1, 0, 0],
 [-sin(Ay), 0, cos(Ay), -h_RT],
 [0, 0, 0, 1]]) #
Description of {R} relative to {T}

 T_LR=matrix([[1, 0, 0, 0],
 [0, 1, 0, 0],
 [0, 0, 1, -h_LR],
 [0, 0, 0, 1]]) #
Description of {L} relative to {R}

 T_LR=matrix([[1, 0, 0, -d_SL],
 [0, 1, 0, 0],
 [0, 0, 1, h_SL],
 [0, 0, 0, 1]]) #
Description of {L} relative to {R}

 # Define the compound transformations between the coordinate
 # systems that are not directly fixed to each other
 T_LO=T_TO*T_RT*T_LR # Description of {L} relative to {O}

 # Define the laser’s position vector in {L} for the
 # reference position
 pr_L=matrix([[50000],[0],[0],[1]]) # 50000cm = 500m (rifle’s maximum
effective range)

 83

 # Describe this reference position vector in {O}
 pr_O=T_LO*pr_L

###################### End Our Code #####################

 #Fire up listening thread
 listThread.start()
 while (True):

 #turn the LED off
 #color = [0, 0, 0]
 #threespace_api.TSDLSensor.setLEDColor(device,color)

 ##quat = ts.getTaredOrientationAsQuaternion(device)
 quat=
threespace_api.TSDLSensor.getUntaredOrientationAsQuaternion(device)
 if quat is not None:
 x = quat[0]
 y = quat[1]
 z = quat[2]
 w = quat[3]
 #http://answers.unity3d.com/questions/416169/finding-
pitchrollyaw-from-quaternions.html

#################### Start Our Code #####################

 ###
 # Convert the quaternion from the sensor’s reading to
 # Euler angles
 # Note: Referencing MATLAB code given to Caleb Khan from
 # James Calusdian. Original author is Xiaoping Yun.

 # If the quaternion scalar component w is negative,
 # then negate the sign of the quaternion vector component
 if w<0:
 x=-x
 y=-y
 z=-z
 w=-w
 print(x,y,z,w)
 B=matrix([[w**2+x**2-y**2-z**2, 2*(x*y+z*w), 2*(x*z-w*y)],
 [2*(x*y-w*z), w**2-x**2+y**2-z**2, 2*(y*z+w*x)],
 [2*(x*z+w*y),2*(y*z-w*x),w**2-x**2-y**2+z**2]]);

 roll=math.atan2(B[1,2],B[2,2])*180/math.pi
 pitch=-math.asin(B[0,2])*180/math.pi
 yaw=math.atan2(B[0,1],B[0,0])*180/math.pi

 84

Assumptions: Assume that the rifleman is positioned with
his or her rifle (and sensor) initially aligned with the
actual NED’s positive x-axis. An offset rotation matrix
must be defined in the future to account for the sensor
not being aligned as described.

Adjust the rifle’s laser orientation based on the
rotations that correspond to the sensor’s readings from
above

 # Convert the Euler angles into radians
 # Note: ‘m’ stands for measured angles
 Azm=yaw*math.pi/180 # rotation about z-axis (yaw)(alpha)
 Aym=pitch*math.pi/180 # rotation about y-axis (pitch)(beta)
 Axm=roll*math.pi/180 # rotation about x-axis (roll)(gamma)

 # Define the special homogeneous transformations for
 # the rotations about a fixed axis
 Tz=matrix([[cos(Azm), -sin(Azm), 0, 0],
 [sin(Azm), cos(Azm), 0, 0],
 [0, 0, 1, 0],
 [0, 0, 0, 1]]) # Rotation about the z-
axis

 Ty=matrix([[cos(Aym), 0, sin(Aym), 0],
 [0, 1, 0, 0],
 [-sin(Aym), 0, cos(Aym), 0],
 [0, 0, 0, 1]]) # Rotation about the y-
axis

 Tx=matrix([[1, 0, 0, 0],
 [0, cos(Axm), -sin(Axm), 0],
 [0, sin(Axm), cos(Aym), 0],
 [0, 0, 0, 1]]) # Rotation about the x-
axis

 # Redefine the description of {L} relative to {O} by
 # pre-multiplying these rotations by their respective
 # coordinate systems
 # Note: ‘m’ stands for measured transformations
 T_LOm=T_TO*Tz*T_RT*Ty*Tx*T_LR

 # Compute the resulting position vectors that describes
 # the rifle’s laser orientation after these rotations
 # in {O}
 pm_O=T_LOm*pr_L

 # Determine if any of the friendly nodes are
 # within the safety threshold surrounding the rifle’s
 # cone of fire
 #if __name__ == ‘__main__’:
 # try:

 85

 # listener()
 # except rospy.ROSInterruptException:
 # pass
 detectfriendly(pm_O[[0,1,2],:],O_TO[[0,1,2],:],posFriendly)

 # Display the friendly’s position and rifle’s position
 # vector for comparison in order to verify the ‘cease fire’
 # print statement in the detectfriendly() function
 print(posFriendly) # Friendly’s (x,y,z) position
 pm_ONorm=math.sqrt(pm_O[0]**2+pm_O[1]**2+pm_O[2]**2)
 pm_OScaled=pm_O[[0,1,2],:]/pm_ONorm
 pm_OScaled=100*pm_OScaled
 print(pm_OScaled) # Rifle’s scaled position vector

###################### End Our Code #####################

######################## ROS ###########################

 #print(“Roll [%.2f] Pitch [%.2f] Yaw [%.2f]” % (roll, pitch,
yaw))
 #print(“Pitch [%.2f]” % pitch)
 #print(“Yaw [%.2f]” % yaw)
 if __name__ == ‘__main__’:
 try:
 PosePub()
 except rospy.ROSInterruptException:
 pass

 #now flash the LED so we know it is communicating, but how??? - ask
YEI support
 color = [0, 0, 255]
 time.sleep(0.04)
 threespace_api.TSDLSensor.setLEDColor(device,color)
 time.sleep(0.04)
 counter += 1
 #exit(1)

#//

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

LIST OF REFERENCES

[1] Rocketbox Libraries. (2012, Sept. 5). High-end military 3D characters and
anmiations by Rocketbox. [Online]. Available: http://rocketbox-
libraries.com/us/index.php/hdsoldierspress.

[2] Marine Corps Planning Process, Marine Corps Warfighting Publication 5-1,
USMC, 2000, pp. 2–5.

[3] J. Calusdian, “A personal navigation system based on inertial and magnetic field
measurements,” Ph.D. dissertation, Dept. Elect. & Comp. Eng., Naval
Postgraduate School, Monterey, CA, 2010.

[4] J. Rantakokko, J. Rydell, P. Stromback, P. Handel, J. Callmer, D. Tornqvist, F.
Gustafsson, M. Jobs, and M. Gruden, “Accurate and reliable soldier and first
responder indoor positioning: Multisensor systems and cooperative localization,”
IEEE Wireless Communications, vol. 18, no. 2, pp. 10–17, April 2011.

[5] J. C. Driesslein, “Scalable Mobile Ad Hoc Network (MANET) to Enhance
Situational Awareness in Distributed Small Unit Operations,” M.S. thesis, Dept.
Elect. & Comp. Eng., Naval Postgraduate School, Monterey, CA, 2015.

[6] Marine Rifle Squad, Marine Corps Warfighting Publication 3-11.2, USMC, 2002,
9.1.

[7] Crew-Served Machine Guns, 5.56-mm and 7.62-mm, FM 3-22.68, U.S. Dept. of
the Army, Washington, DC, 2003, 5.3–5.4.

[8] USGI Colt carbine parts variation guide Edition IV. (n.d.). AR15.com. [Online].
Available: https://www.ar15.com/mobile/topic.html?b=3&f=123&t=296919.
Accessed Aug. 17, 2015.

[9] R. Lammie. (n.d.). Give me a sign: The stories behind 5 hand gestures. [Online].
Available: http://mentalfloss.com/article/24475/give-me-sign-stories-behind-5-
hand-gestures. Accessed Aug. 17, 2015.

[10] J. J. Craig, “Introduction” in Introduction to Robotics: Mechanics and Control,
2nd ed. Reading, MA: Addison-Wesley, 1989, ch. 1, sec. 2–3, pp. 4–16.

[11] J. J. Craig, “Spatial Descriptions and Transformations” in Introduction to
Robotics: Mechanics and Control, 2d ed. Reading, MA: Addison-Wesley, 1989,
ch. 2, pp. 19–67.

[12] M4 carbine. (2015, Aug. 15). Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/M4_carbine. Accessed Aug. 17, 2015.

http://rocketbox-libraries.com/us/index.php/hdsoldierspress
http://rocketbox-libraries.com/us/index.php/hdsoldierspress
https://www.ar15.com/mobile/topic.html?b=3&f=123&t=296919
http://mentalfloss.com/article/24475/give-me-sign-stories-behind-5-hand-gestures
http://mentalfloss.com/article/24475/give-me-sign-stories-behind-5-hand-gestures
https://en.wikipedia.org/wiki/M4_carbine

 88

[13] AN/PEQ-15. (n.d.). U.S. Night Vision. [Online]. Available:
http://www.usnightvision.com/anpeq-15atpial.aspx. Accessed Aug. 17, 2015.

[14] Video camera tripods. (n.d.). MediaCollege.com. [Online]. Available:
http://www.mediacollege.com/video/camera/tripod/. Accessed Aug. 17, 2015.

[15] 3-Space data-logging. (n.d.). YEI Technology. [Online]. Available:
https://www.yeitechnology.com/productdisplay/3-space-data-logging. Accessed
Mar. 24, 2015.

[16] J. B. Kuipers, “Algorithm Summary,” in Quaternions and Rotation Sequences,
Princeton, NJ: Princeton Univ. Press, 1999, ch. 7, sec. 7, pp. 167–168.

[17] YEI 3-space sensor. (n.d.).YEI Technology. [Online]. Available:
http://www.yeitechnology.com/sites/default/files/TSS_Family_Tech_Brief_v1.0.4
b.pdf. Accessed Mar. 24, 2015.

[18] VICON. (n.d.). VICON Motion Systems. [Online]. Available:
http://www.vicon.com/. Accessed Jun. 10, 2015.

[19] A. A. Grompone, “Vision-based 3D motion estimation for on-orbit proximity
satellite tracking and navigation,” M.S. thesis, Dept. Elect. & Comp. Eng., Naval
Postgraduate School, Monterey, CA, 2015.

[20] “Logic functions of two variables,” class notes for Digital Logic Circuits, Dept.
Elect. & Comp. Eng., Naval Postgraduate School, Monterey, CA, fall 2015.

[21] 3-Space sensor user’s manual. (2014, Nov. 14). YEI Technology. [Online].
Available:
http://www.yeitechnology.com/sites/default/files/YEI_TSS_Users_Manual_3.0_r
1_4Nov2014.pdf. Accessed Jul. 18, 2015.

http://www.usnightvision.com/anpeq-15atpial.aspx
http://www.mediacollege.com/video/camera/tripod/
https://www.yeitechnology.com/productdisplay/3-space-data-logging
http://www.yeitechnology.com/sites/default/files/TSS_Family_Tech_Brief_v1.0.4b.pdf
http://www.yeitechnology.com/sites/default/files/TSS_Family_Tech_Brief_v1.0.4b.pdf
http://www.vicon.com/
http://www.yeitechnology.com/sites/default/files/YEI_TSS_Users_Manual_3.0_r1_4Nov2014.pdf
http://www.yeitechnology.com/sites/default/files/YEI_TSS_Users_Manual_3.0_r1_4Nov2014.pdf

 89

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. technological superiority in war
	B. geometry of fire
	C. sensor network
	D. thesis objective

	II. background
	A. assumptions
	1. Personal Navigation System
	2. Tactical Network
	3. CQC Considerations

	B. cone of fire
	C. algorithms
	1. Reference Coordinate System
	2. Model of a Rifleman’s Kinematics
	3. Geometry-of-Fire Tracking Algorithm

	D. summary

	III. experimental design
	A. Hardware components
	1. YEI 3-Space Data-Logging Sensor
	2. VICON Motion System

	B. test plan
	1. Validation of the Sensor’s Accuracy
	2. Verification of the Rifleman’s Kinematic Model
	3. Testing of the Geometry-of-Fire Tracking Algorithm

	C. summary

	IV. results and analysis
	A. validation of the sensor’s accuracy
	1. Synchronizing the Collected Data Sets
	2. Accuracy of the Sensor’s Estimated Orientations

	B. verification of the kinematic model
	1. Scaling Factor for the Kinematic Model
	2. Trueness of the Kinematic Model

	C. testing of the tracking algorithm
	1. Simulation of Moving Friendly Nodes
	2. Algorithm’s Ability to Detect Geometry Issues

	D. summary

	V. conclusion and recommendations
	A. SUMMARY OF CONTRIBUTIONS
	B. future work
	(1) Survey of Technology
	(2) Filtering of the Sensor’s Raw Measurements
	(3) Refinement of the Rifleman’s Kinematic Model
	(4) Integration of the PNS, Tactical Network, and Feedback Mechanism

	appendix
	A. settings for the yei 3-space data-logging sensor
	B. matlab scripts for verifing the kinematic model
	1. Function for Analyzing the Sensor’s Accuracy
	2. Function for Synchronizing the Collected Data Sets
	3. Main Script File for Implementing the Kinematic Model

	C. Python Scripts for testing the tracking algorithm
	1. Function for Publishing Node Positions
	2. Script File for Implementing Tracking Algorithm

	List of References
	initial distribution list

